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Abstract

We study the optimal design of student �nancial aid as a function of parental income.

We derive optimal �nancial aid formulas in a general model. For a simple model version,

we derive mild conditions on primitives under which poorer students receive more aid

even without distributional concerns. We quantitatively extend this result to an empiri-

cal model of selection into college for the United States that comprises multidimensional

heterogeneity, endogenous parental transfers, dropout, labor supply in college, and uncer-

tain returns. Optimal �nancial aid is strongly declining in parental income even without

distributional concerns. Equity and e�ciency go hand in hand.
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1 Introduction

In all OECD countries, college students bene�t from �nancial support (OECD, 2014). More-

over, with the goal of guaranteeing equality of opportunity, �nancial aid is typically need-

based and targeted speci�cally to students with low parental income. In the United States,

the largest need-based program is the Pell Grant. Federal spending on this program exceeded

$30 billion in 2015 and has grown by over 80% during the last 10 years (College Board, 2015).

One justi�cation for student �nancial aid in the policy debate is that the social returns

to college exceed the private returns because the government receives a share of the �nancial

returns through higher tax revenue (Carroll and Erkut, 2009; Baum et al., 2013). This lowers

the e�ective �scal costs (i.e., net of tax revenue increases) of student �nancial aid.1

In this paper, we study the optimal design of �nancial aid and show that considering

dynamic scoring aspects is crucial to assessing the desirability of need-based programs such

as the Pell Grant. The reduction in the e�ective �scal costs of student �nancial aid due to

dynamic �scal e�ects varies along the parental income distribution. We show that e�ective

�scal costs are increasing in parental income and are therefore lowest for those children that

are targeted by the Pell Grant. The policy implication is that need-based �nancial aid is

desirable not only because it promotes intergenerational mobility and equality of opportunity.

Need-based �nancial aid is also desirable from an e�ciency point of view because subsidizing

the college education of children from weak parental backgrounds is cheaper for society than

subsidizing students from "average" parental backgrounds. The usual equity-e�ciency trade-

o� does not apply for need-based �nancial aid.

To arrive there, we start with a general model without imposing restrictions on the under-

lying heterogeneity in the population. Further, besides enrollment, labor supply and savings

decisions, we consider dropout, labor supply during college and endogenous parental trans-

fers. We derive a simple optimality condition for �nancial aid that transparently highlights

the key trade-o�s. At a given level of parental income, optimal �nancial aid decreases in the

share of inframarginal students, which captures the marginal costs. These costs are scaled

down by the marginal social welfare weights attached to these students. Optimal �nancial aid

increases in the share of marginal students2 and the �scal externality per marginal student,

which jointly capture the marginal bene�ts of the subsidy. The �scal externality is the change

in lifetime �scal contributions causal to college attendance.3 For the optimality condition, the

1The Congressional Budget O�ce (CBO), following a request by the Senate Committee on the Budget,
recently documented the growth in the �scal costs of Pell Grant spending (Alsalam, 2013). Dynamic scoring
aspects are neglected in this report: the positive �scal e�ects through higher tax revenue in the future are
not taken into account. Generally, the CBO does consider issues of dynamic scoring: https://www.cbo.gov/
publication/50919.

2Those students that are at the margin of attending college with respect to �nancial aid.
3On top of that, �nancial aid is also increasing in the completion elasticity with respect to �nancial aid

and the �scal externality due to completing college instead of dropping out. This channel, however, turns out
to be quantiatively of minor importance.
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speci�c reason why marginal students change their behavior due to a change in subsidies (e.g.,

borrowing constraints or preferences) is not important.

Elasticities linking changes in enrollment behavior to changes in �nancial aid have been

estimated in the literature (e.g., by Dynarski (2003) and Castleman and Long (2016)). These

papers provide guidance about the average value of this policy elasticity or about its value at

a particular parental income level. However, knowledge about how this elasticity varies along

the parental income distribution is missing. Knowledge of those parameters for students from

di�erent parental income groups, however, is necessary to analyze the welfare e�ects of need-

based �nancial aid. Further, these elasticities are not deep parameters but do change as policy

changes. The main approach of this paper is therefore a structural model of selection into

college that allows us to compute this policy elasticity along the parental income distribution

and for alternative policies.

As a �rst step, however, before studying this empirical model, we consider a simple theo-

retical setting. We reduce the complexity of the problem by focusing on two dimensions of

heterogeneity: (i) parental transfers and (ii) returns to college. Further, we simplify the model

by making the problem static, shutting down risk, labor supply during college and dropout.

We �rst show that �nancial aid is decreasing in parental income even in the absence of dis-

tributional concerns if the distribution of returns is log concave (which implies a decreasing

hazard rate)4 and if returns and parental income are independently distributed. We then

show that these analytical results extend to the empirically more plausible case of a positive

association between parental income and child ability.5

We then move to our structural life-cycle model, where we account for earnings risk,

dropout, labor supply during college and, importantly, we account for crowd-out of parental

transfers by explicitly modeling parental decisions to save, consume and provide transfers

to their children. Another additional crucial ingredient of the model is heterogeneity in the

psychic costs of education because monetary returns can only account for a small part of the

observed college attendance patterns (Heckman et al., 2006). Using data from the National

Longitudinal Survey of Youth 1979 and 1997, we estimate the parameters of our model via

maximum likelihood and provide a detailed discussion of how variation in the data helps us

to identify the crucial parameters.

The model successfully replicates quasi-experimental studies. First, it is consistent with

estimated elasticities of college attendance and graduation rates with respect to �nancial aid

expansions (Deming and Dynarski, 2009). Second, it is consistent with the causal impact

of parental income changes on college graduation rates (Hilger, 2016). Further, our model

4The hazard rate pins down the ratio of marginal over inframarginal students which is also key in this
simpli�ed model.

5We obtain this clear analytical result if the ability distribution of high parental income children dominates
the distribution of low parental income children in the hazard rate order. For a Pareto distribution, e.g., the
property of hazard rate dominance always holds in case of �rst-order stochastic dominance.
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yields (marginal) returns to college that are in line with the empirical literature (Card, 1999;

Oreopoulos and Petronijevic, 2013; Zimmerman, 2014).

We �nd that optimal �nancial aid policies are strongly progressive. In our preferred spec-

i�cation, the level of �nancial aid drops by more than 69% moving from the 10th percentile

of the parental income distribution to the 90th percentile. The strong progressivity result

does not rely on the Utilitarian welfare criterion. We show that a social planner that is only

interested in maximizing tax revenues would choose an almost equally progressive �nancial

aid schedule.

Second, our estimates suggest that targeted increases in �nancial aid for students below the

45th percentile of the parental income distribution, are self-�nancing by increases in future tax

revenue; this implies that targeted �nancial aid expansions could be Pareto-improving free-

lunch policies. Both results point out that �nancial aid policies for students are a rare case in

which there is no equity-e�ciency trade-o�: education policies which lead to a cost-e�ective

distribution of �nancial aid are also in line with redistributive concerns and social mobility.

One may have expected that e�ciency considerations would make a case against need-

based �nancial aid because of the positive correlation between returns to college and parental

income. This correlation is indeed positive in our empirical model, and the �scal externality

of the average marginal student with high parental income is higher than for the average

marginal student with low parental income. However, this e�ect is dominated by the fact that

at higher parental income levels many more students are inframarginal. We provide a model-

based decomposition to assess which features are most important for the parental income

gradient. Once we shut down the relation between parental income and ability of the kids

(i.e. returns to college) and preferences for college, the gradient is almost �at. This indicates

that di�erences in �nancial resources directly only seem to play a minor role.

In a last step, we provide several extensions and robustness checks. We show that our pro-

gressivity result also holds if we (i) remove borrowing constraints, (ii) choose the merit-based

dimension of �nancial aid optimally, (iii) allow the government to set an optimal Mirrleesian

income tax schedule, (iv) model early educational investments and thereby endogenize ability

and (v) if the relative wage for college educated labor is determined in general equilibrium.

Our paper contributes to the existing literature in several ways. Stantcheva (2017) char-

acterizes optimal human capital policies in a very general dynamic model with continuous

education choices. The main di�erences with our approach are twofold. First, theoretically,

we study a model with discrete education choices as we �nd this a natural way to study

�nancial aid policies. As we show, the optimality conditions are quite distinct from the con-

tinuous case and di�erent elasticities are required to characterize the optimum.6 Second, the

6This resembles the di�erent results in the optimal tax literature along the extensive versus the intensive
margin (Diamond, 1980; Saez, 2001, 2002).
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extensive margin education decision allows us to incorporate a large degree of heterogeneity

without making the optimal policy problem intractable. This allows for a modeling approach

that is close to the empirical, structural literature.

Bovenberg and Jacobs (2005) consider a static model with a continuous education choice

and derive a �siamese twins� result: they �nd that the optimal marginal education subsidy

should be as high as the optimal marginal income tax rate, thereby fully o�setting the dis-

tortions from the income tax on the human capital margin.7 Lawson (2017) uses an elasticity

approach to characterize optimal uniform tuition subsidies for all college students.8 We con-

tribute to this line of research by developing a new framework to analyze how education policies

should depend on parents' resources9 and also trade o� merit-based concerns. Our theoretical

characterization of optimal �nancial aid (and tax policies) allows for a large amount of het-

erogeneity, and we tightly connect our theory directly to the data by estimating the relevant

parameters ourselves. Finally, the paper is also related to many empirical papers, from which

we take the evidence to gauge the performance of the estimated model. Those papers are

discussed in detail in Section 4.

We progress as follows. In Section 2 we develop the general model and characterize the

optimal policies in terms of reduced-form elasticities. In Section 3 we consider a simpli�ed

version of the model, which allows us to transparently study mild conditions on primitives

under which �nancial aid is optimally decreasing in parental income. In Section 4 we describe

our estimation approach and discuss the relationship to previous empirical work. Section 5

presents optimal �nancial aid policies, and Section 6 considers the jointly optimal education

and tax policies. In Section 7 we discuss further robustness issues. Section 8 concludes.

2 Optimal Financial Aid Policies

In this section we characterize optimal (need-based) �nancial aid policies for college students.

Our approach is to work with a general model and characterize the optimal policy in terms of

reduced-form elasticities. This formula is general on the one hand and economically intuitive

on the other, providing intuition on which objects determine the optimal �nancial aid.

7Bohacek and Kapicka (2008) derive a similar result as in a dynamic deterministic environment. In
Findeisen and Sachs (2016), we focus on history-dependent policies and show how history-dependent labor
wedges can be implemented with an income-contingent college loan system. Koeniger and Prat (2017) study
optimal history-dependent human capital policies in a dynastic economy where education policies also depend
on parental background. Stantcheva (2015) derives education and tax policies in a dynastic model with multi-
dimensional heterogeneity, characterizing the relationship between education and bequest policies.

8Our work is also complementary to Abbott et al. (2018) and Krueger and Ludwig (2013, 2016), who study
education policies computationally in very rich overlapping-generations models.

9Gelber and Weinzierl (2016) study how tax policies should take into account that the ability of children
is linked to parents' resources and �nd that the optimal policy is more redistributive towards low-income
families.
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Before we move on to a fully speci�ed empirical model, we �rst focus on a simpli�ed

framework in Section 3 and derive conditions on primitives that imply that optimal �nancial

aid is indeed need-based, (i.e., that �nancial aid is decreasing in parental income). Importantly,

this result holds in the absence of distributional concerns between students with di�erent

parental backgrounds. In Section 4, we estimate the fully speci�ed structural model, which

is mainly a speci�c case of the model analyzed in Section 2.10 We use the estimated model

to solve for the optimal �nancial aid in the United States under a variety of scenarios and

assumptions about the social welfare function.

2.1 Individual Problem

Individuals start life in year t = 0 as high school graduates and are characterized by a vector

of characteristics X ∈ χ and (permanent) parental income I ∈ R+. Life lasts T periods and

individuals face the following decisions. At the beginning of the model, they face a binary

choice: enrolling in college or not. If individuals decide against enrollment, they directly enter

the labor market and make labor-leisure decisions every period. If individuals decide to enroll

in college, they also make a labor-leisure decision during college and at the beginning of the

year decide to drop out or continue. Individuals graduate after four years. After graduating

or dropping out, individuals enter the labor market.

We start by considering labor market decisions of individuals that either are out of college

or have chosen to forgo college altogether. This is a standard labor-leisure-savings problem

with incomplete markets. Let V W
t (·) denote the value function of an individual in the labor

market in year t. Then the recursive problem is given by

V W
t (X, I, e, at, wt) = max

ct,lt
U(ct, lt) + βE

[
V W
t+1(X, I, e, at+t, wt+1)|wt

]
subject to the budget constraint

ct + at+1 = ltwt − T (ltwt) + at(1 + r) + trt(X, I, e, at, wt).

The state variables are the initial characteristics (X, I), the education level e ∈ {H,D,G}
(high school graduate, college dropout, college graduate), assets at, and the current wage

wt. The variables (X, I, e) are state variables because they may a�ect parental transfers

trt(X, I, e, at, wt) and because they may a�ect the evolution of future wages. The dependence

on the education decision then captures the returns to education. The function T captures

10In a few minor and rather technical aspects it is, however, more general, as we elaborate below. Incor-
porating these generalizations in Section 2 already would signi�cantly complicate notation without adding
additional economic insights.
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the tax-transfer system. Finally, we assume that the utility function is such that there are no

income e�ects on labor supply.11

For the �nal period T , the value function is simply given by

V W
T (X, I, e, aT , wT ) = max

cT ,lT
U(cT , lT ) s.t. cT = lTwt−T (lTwt)+aT (1+r)+trT (X, I, e, aT , wT ).

Having de�ned these value functions during the working life, we now turn to the value

functions of the di�erent education decisions. The value of not enrolling in college (i.e.,

choosing education level H) is simply given by

V H(X, I) =E
[
V W

1 (X, I, e = H, a1 = 0, w1)
]
.

Regarding the realization of uncertainty, the timing is such that individuals directly enter the

labor market in period one and draw their �rst wage w1, which is hence only known after the

education decision has been made.

Next, we turn to the decisions during college. Besides the question of how much to work

and consume while in college, individuals also make the binary decision of dropping out or

staying enrolled. Let V E
4 (·) denote the value function of an agent currently enrolled in college

in year t = 4. We proceed by backward induction and �rst de�ne the value of continuing

college in period t = 4, hence �nishing college. It is given by

V E
4 (X, I, a4, ε4) = max

c4,lE4

UE(c4, l
E
4 ;X, I, ε4) + βE

[
V W

5 (X, I, e = G, a5, w5) ]

subject to

c4 + a5 = lE4 w(X, I) + G(I)−F + trE4 (X, I, at,G(I)) + a4 (1 + r) ,

where w(X, I) is the wage that students earn if they work during college and F is the tuition

fee. We denote work in college by lEt to di�erentiate work in college from work after entering

the labor market.12 The term G(I) is the amount of (need-based) �nancial aid a student

with parental income I receives,13 and trEt (X, I, at,G(I)) captures parental transfers in year

t for children that are enrolled in college. Importantly, we allow them to be endogenous

with respect to the level of �nancial aid to account for the potential crowding out of parental

11We discuss the relaxation of this assumption in Section 7.6.
12We assume these earnings are not taxed. In the data, the average earnings of students who work in

college are so low that they do not have to pay positive income taxes; in addition, the vast majority of college
students does not qualify for welfare/transfer programs.

13In reality, �nancial aid depends not only on parental income but also on other characteristics of the
student. We abstract from that for simplicity in this section but account for this in the estimated model.
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transfers through �nancial aid. We denote �ow utility during college by UE(ct, l
E
t ;X, I, εt).

The dependence on (X, I) captures nonpecuniary aspects of college education which have

been found to be important to explain actual college enrollment patterns.14 The term εt is a

stochastic component of these non-pecuniary aspects.

Next we turn to the value of dropping out in period t, which is simply given by

V D
t (X, I, at) =E

[
V W
t (X, I, e = D, at, wt)

]
.

In period 4, an individual drops out if V D
4 (X, I, a4) ≥ V E

4 (X, I, a4, ε4). Based on that, we can

also de�ne the value of being enrolled for all further periods t = 1, 2, 3:

V E
t (X, I, at, εt) = max

ct,lEt

UE(ct, l
E
t ;X, I, εt) + β Emax[V E

t+1(X, I, at+1, εt+1), V D
t+1(X, I, at+1)]

subject to

ct + at+1 = lEt w(X, I) + G(I) + trt(X, I, at,G(I)) + at (1 + r) ,

and where a1 = 0. And of course more generally, an individual in period t drops out in period

t if V D
t (X, I, at) ≥ V E

t (X, I, at, εt). Let Pt(X, I,G(I)) denote the share of individuals of type

(X, I) that do not drop out in period t, and let P (X, I,G(I)) =
∏4

t=1 Pt(X, I,G(I)) be the

proportion of all initially enrolled students that graduate. Importantly the model captures

the idea that the dropout decision is endogenous with respect to to �nancial aid.

Finally we denote the value of enrolling into college in the �rst place as

V E(X, I) = E
[
V E

1 (X, I, a1 = 0, ε1)
]
.

An individual enrolls in college if V E(X, I) ≥ V H(X, I).

We now move to policy analysis and make one simplifying assumption for the purpose of

clarity. We assume that individuals can only drop out after two years in college such that

Pt(X, I,G(I)) = 1 if t 6= 3. In Appendix A.2, we state the more general version and show that

besides more cumbersome notation, the results are basically unchanged.

2.2 Fiscal Contributions

We now de�ne the expected net �scal contributions for di�erent types (X, I) and di�erent

education levels as these will be key ingredients for the policy analysis. We start with the net

present value (NPV) in net tax revenues of high school graduates of type (X, I):

14See Cunha et al. (2005), Heckman et al. (2006) or Johnson (2013).
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NT HNPV (X, I) =
T∑
t=1

(
1

1 + r

)t−1

E (T (yt)|X, I,H) ,

where yt = wtlt is total earnings in year t. The equivalent for a college graduate is given by

NT GNPV (X, I) =
T∑
t=5

(
1

1 + r

)t−1

E (T (yt)|X, I,G)− G(I)
4∑
t=1

(
1

1 + r

)t−1

,

where the costs for �nancial aid are subtracted from tax revenue. The �scal contribution of a

dropout is given by

NT DNPV (X, I) =
T∑
t=3

(
1

1 + r

)t−1

E (T (yt)|X, I,D)− G(I)
2∑
t=1

(
1

1 + r

)t−1

.

Finally, we de�ne the expected �scal contribution of an individual that decides to enroll:

NT ENPV (X, I) = P (X, I,G(I))×NT GNPV (X, I) + (1− P (X, I,G(I)))×NT DNPV (X, I).

Before we derive optimal education subsidies, we ease the upcoming notation a little bit.

Let a type (X, I) be labeled by j and de�ne the enrollment share for income level I:

E(I) =

∫
χ

1V Ej ≥V Hj h(X|I)dX,

where 1V Ej ≥V Hj is an indicator function capturing the education choice for each type j = (X, I).

Next, we de�ne the completion rate by

C(I) =

∫
χ
1V Ej ≥V Hj P (X, I,G(I))h(X|I)dX

E(I)
,

which captures the share of enrolled students of parental income level I that actually graduate.

We assume that these shares, as well as the probability of dropping out, P(X, I,G(I)), are

di�erentiable in the level of �nancial aid.

2.3 Government Problem and Optimal Policies

We now characterize the optimal �nancial aid schedule G(I). We denote by F (I) the uncondi-

tional parental income distribution, by K(X, I) the joint c.d.f. and by H(X|I) the conditional

one; the densities are f(I), k(X, I), and h(X|I), respectively. The government assigns Pareto

weights k̃(X, I) = f̃(I)h̃(X|I), which are normalized to integrate up to one.

Importantly, we assume that the government takes the tax-transfer system T (·) as given

and consider the optimal budget-neutral reform of G(I). Whereas the tax-transfer system is

not changed if �nancial aid is reformed, a change in the �nancial aid schedule changes the size
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and the composition of the set of individuals that go to college. This implies a change in tax

revenue and transfer spending that directly feeds back into the available resource for �nancial

aid.15

Taking the tax-transfer system as given, the problem of the government is

max
G(I)

∫
R+

∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI (1)

subject to the net present value government budget constraint:

∫
R+

∫
χ

NT HNPV (X, I)1V Ej <V Hj k(X, I)dXdI

+

∫
R+

∫
χ

NT GNPV (X, I)1V Ej ≥V Hj P (X, I,G(I))k(X, I)dXdI

+

∫
R+

∫
χ

NT DNPV (X, I)1V Ej ≥V Hj (1− P (X, I,G(I))) k(X, I)dXdI ≥ F̄ , (2)

where 1V Ej <V Hj and 1V Ej ≥V Hj are indicator functions capturing the education choice for each

type j = (X, I). The term F̄ captures exogenous revenue requirements (e.g. spending on

public goods) and exogenous revenue sources (e.g. tax revenue from older cohorts). Hence,

F̄ < 0 could capture that the cohort for which we are reforming the �nancial aid schedule is

e�ectively subsidized from other cohorts.

Now we consider a marginal increase in G(I). As we show in Appendix A.1, it has the

following impact on welfare:

∂E(I)

∂G(I)
×∆T E(I)︸ ︷︷ ︸

Enrollment E�ect

+
∂C(I)

∂G(I)

∣∣∣∣∣
E(I)

× E(I)×∆T C(I)︸ ︷︷ ︸
Completion E�ect

− Ẽ(I)
(
1−WE(I)

)︸ ︷︷ ︸
Mechanical E�ect

. (3)

The �rst two terms of (3) capture behavioral e�ects (i.e., changes in welfare that are due to

individuals changing their behavior). The third term captures the mechanical welfare e�ect

(i.e. the welfare e�ect that would occur for �xed behavior). We start with the latter.

The mechanical e�ect captures the direct welfare impact of the grant increase to infra-

marginal students. The more students are inframarginal in their decision to go to college

and the more of them who do not drop out, the higher are the immediate costs of the grant

increase. The term Ẽ(I) is the total discounted years of college attendance of income group

I and is de�ned as

15We consider this as the more policy-relevant exercise than considering the joint optimal choice of T (·) and
G(I). Nevertheless, to complete the picture, in Section 7.3, we consider the joint optimal design of �nancial aid
G(I) and the tax-transfer system T (·). Further, we also explore jointly optimal merit and need-based �nancial
aid in Appendix A.3 and Section 7.2.
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Ẽ(I) =

∫
χ

1V Ej ≥V Hj

(
4∑
t=1

(
1

1 + r

)t−1 t∏
s=1

Ps(X, I,G(I))

)
h(X|I)dX.

This captures the direct marginal �scal costs of the grant increase.

Since the utility of these students is valued by the government, the costs have to be scaled

down by a social marginal welfare weight (Saez and Stantcheva, 2016). We denote average

social marginal welfare weight of inframarginal students with parental income I by WE(I).

Formally it is given by

WE(I) =

∫
χ
1V Ej ≥V Hj

∑4
t=1 β

t−1UE
c (ct, l

E
t ;X, I)

(
1 + ∂trt(X,I,G(I))

∂G(I)

)∏t
s=1 Ps(X, I,G(I))h̃(X|I)dX

ρf(I)

f̃(I)
Ẽ(I)

,

where ρ is the marginal value of public funds and UE
c is the marginal utility of consumption.16

Thus, WE(I) is a money-metric (appropriately weighted) average marginal social welfare

weight. One di�erence from the standard concept applies here, however. One has to correct

for the implied reduction in parental transfers that accompanies an increase in resources

for college students. For each marginal dollar of additional grants, students only have an

increase in consumption that is given by
(

1 + ∂trt(X,I,G(I))
∂G(I)

)
. The share −∂trt(X,I,G(I))

∂G(I)
of the

grant increase is o�set by a reduction in parental transfers and does not e�ectively reach the

student. Ceteris paribus, the stronger the crowding out of transfers, the lower are these welfare

weights since fewer of the additional grants e�ectively reach students.17

We now turn to the behavioral welfare e�ects in the �rst line of (3). The �rst term captures

the change in tax revenues due to an increase in enrollment and ∂E(I)
∂G(I)

captures the additional

enrollees. Since these individuals are marginal in their enrollment decision, this change in their

decision has no �rst-order e�ect on their utility. Therefore, we only have to track the e�ect

on welfare through the e�ect on public funds. The term ∆T E(I) captures the the average

increase in the NPV of net tax revenues for these marginal enrollees. Formally, it is given by

∆T E(I) =

∫
χ
1Hj→Ej∆T E(X, I) h(X|I)dX∫

χ
1Hj→Ej h(X|I)dX

, (4)

where 1Hj→Ej takes the value one if an individual of type j is marginal in her college en-

rollment decision with respect to a small increase in �nancial aid. By de�nition we have∫
χ
1Hj→Ejh(X|I)dX = ∂E(I)

∂G(I)
. ∆T E(X, I) is the (expected) �scal externality of an individual

of type (X, I): ∆T E(X, I) = NT ENPV (X, I)−NT HNPV (X, I).

16For notational convenience but without loss of generality, we assume that the marginal utility of con-
sumption is independent of the preference shock εt.

17Note that we are not accounting for parents' utilities here. Doing so would basically imply an increase in
the social welfare weights as not only the children but also the altruistic parents are bene�ting from the grants.
The change in parental transfers would have no impact on parent's utility due to the envelope theorem.
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There is a second behavioral e�ect due to endogenous college dropout. This second term

in (3) captures the increase in tax revenue due to an increase in the completion rate of the

inframarginal enrollees. The term ∂C(I)
∂G(I)

∣∣∣
E(I)

is the partial derivative of completion w.r.t.

�nancial aid, holding E(I) constant. Therefore, the term ∂C(I)
∂G(I)

∣∣∣
E(I)
× E(I) captures the

amount of inframarginal enrollees who did not graduate in the absence of the grant increase

but graduate now. Again, the envelope theorem applies and the change in their behavior has

no �rst-order e�ect on their utility. However, there is a welfare e�ect through the change

in public funds. ∆T C(I) captures the implied change in net �scal contributions through the

increased completion rate:

∆T C(I) =

∫
χ

∆T C(X, I)∂P (X,I,G(I))
∂G(I)

h(X|I)dX∫
χ
∂P (X,I,G(I))

∂G(I)
h(X|I)dX

,

where∆T C(X, I) = NT GNPV (X, I) − NT DNPV (X, I). Finally, note that formula (3) is inde-

pendent of the adjustment in labor supply during college as a response to the grant increase.

This is an implication of the envelope theorem.

Evaluating (3) at the optimum and rearranging yields the following (implicit) expression

for the optimal level of �nancial aid for students with parental income I.

Proposition 1. The optimal level of �nancial aid at income level I is determined by

G(I) =
ηE(I)∆T E(I) + ηC(I)∆T C(I)E(I)

Ẽ(I) (1−WE(I))
, (5)

where ηE(I) = dE(I)
dG(I)
G(I)

and ηC(I) =
dC(I)|E(I)

dG(I)
G(I)

are the semi-elasticities of enrollment and com-

pletion, that is, they capture the percentage point increase in enrollment and completion in

response to a 1% increase in the level of �nancial aid.

The formula for optimal �nancial aid (5) has a very intuitive interpretation. Optimal

�nancial aid is increasing in the e�ectiveness of increasing college attendance measured by

ηE(I); such behavioral responses have been estimated in the literature exploiting �nancial aid

reforms; see the discussion in Section 4.3.18 This e�ect is weighted by the �scal externality

created (i.e., the increase in tax payments). Intuitively, the size of the �scal externality

depends on the returns to college for marginal students, another parameter that has been

estimated in di�erent contexts in prior work. Likewise, optimal �nancial aid is increasing in

the e�ectiveness of increasing the completion rate of inframarginal students and the implied

�scal externality.

Third, optimal �nancial aid is decreasing in the share of inframarginal students, capturing

the marginal cost of increasing �nancial aid. These marginal costs, however, are scaled by the

18This behavioral e�ect is a policy elasticity as discussed in Hendren (2016).
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value placed on college students' welfare. As we anticipated in the introduction, this force

that is captured by the denominator plays a key role in determining the shape of the optimal

G(I) schedule. Intuitively, since for higher income levels, more individuals are inframarginal

in their decision (which we know for sure at least given current policies), the direct marginal

costs of extending �nancial aid for higher income levels are much higher.

Finally note that the crowding out of parental transfers, which is implicit in the welfare

weight, also plays a role. If crowding out is stronger for one parental income level I than for

income level I ′, then this should ceteris paribus make �nancial aid relatively less generous for

parental income level I as compared to I ′.

Formula (5) expresses the optimal policy as a function of reduced-form elasticities and

provides intuition for the main trade-o�s underlying the design of �nancial aid.19 It is valid

without taking a stand on the functioning of credit markets for students, the riskiness of

education decisions, or the exact modeling of how parental transfers are in�uenced by parental

income and how they respond to changes in �nancial aid. Those factors, of course, in�uence

the values of the reduced-form elasticities. For example, a tightening of borrowing constraints

should increase the sensitivity of enrollment especially for low-income students.

However, note that all terms in the optimal �nancial aid formula are endogenous with

respect to policies. Even if we know the empirical values for current policies, this is not

enough to calculate optimal policies. For this purpose, a fully speci�ed model is necessary.

In Section 3, we consider a stylized simple model to obtain explicit analytical results. Our

main approach to study optimal policies, however, is to study a structurally estimated model

in Sections 4-7.

Besides studying the optimal level, our approach allows us to answer a related but di�erent

question: to what extent could small reforms of the current (e.g., US) �nancial aid system be

self-�nancing through higher future tax revenue? We consider this as an interesting comple-

mentary question for at least three reasons. First, it may be easier to implement small reforms

to the existing current federal �nancial aid system. Second, it points out whether there are

potential Pareto-improving free-lunch policy reforms on the table which are independent of

the underlying welfare function. Third, it directly informs policy makers about the e�ective

�scal costs of such policies.

Corollary 1. The �scal return on one marginal dollar invested in �nancial aid for students

with parental income I is given by

R(I) =

∂E(I)
∂G(I)

×∆T E(I) + ∂C(I)
∂G(I)

∣∣∣
E(I)

E(I)×∆T C(I)

Ẽ(I)
− 1. (6)

19Sometimes such formulas are labeled as su�cient statistics formulas. See Kleven (2018) for a discussion
on the terminology in the literature.
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Proof. This directly follows from (3). Dividing by the mechanical e�ect and setting WE(I) =

0.

This expression can be interpreted as the rate of return on one dollar invested in additional

college subsidies at income level I. If it takes the value 0.2, it says that the government gets

$1.20 in additional tax revenue for one marginal dollar invested into college subsidies. If it

is -0.5, it implies that the government gets 50 cents back for each dollar invested: increasing

subsidies by one dollar costs the government only 50 cents per dollar spent. Therefore, another

way of interpreting (6) is to say that the e�ective cost of providing one more dollar to students

of parental income level I is equal to −R(I) dollar.

3 Is Optimal Financial Aid Progressive? A Simple Model

Whereas the formula for the optimal �nancial aid in Proposition 1 is intuitive, it is not easy

to infer under which conditions it implies that optimal �nancial aid is decreasing in parental

income. This is contingent on how the di�erent elasticities depend on parental income given

the optimal schedule of �nancial aid.20

To shed further light on the question of the desirability of progressivity from a theoretical

perspective, the goal of this section is to derive conditions in a simpli�ed framework. As a �rst

step, we consider how Proposition 1 simpli�es in the absence of a college dropout decision.

Corollary 2. In the absence of a college dropout decision, the optimal level of �nancial aid

at income level I is determined by

G(I) =
ηE(I)∆T E(I)

Ẽ(I) (1−WE(I))
. (7)

Expression (7) is signi�cantly simpler than (5). Besides the welfare weight, it only depends

on (i) the share of inframarginal students Ẽ(I)21, (ii) the share of marginal students as captured

by the semi-elasticity ηE(I), and (iii) the �scal externality for marginal students ∆T E(I).

As stated in the previous section, empirically, it is well known that Ẽ ′(I) > 0. Enrollment

is strongly associated with parental income even though current policies are need-based. This

association in itself is ceteris paribus a force for need-based �nancial aid simply because the

real �scal costs of increasing �nancial aid for low-parental-income children are lower. Further,

the share of inframarginal students should be associated with the semi-elasticity ηE(I): the

more individuals are already going to college the less individuals are �left over� as potential

marginal students. Finally, the selection mechanism into college should tell us something

20Hence, even if we had knowledge about how these reduced-form elasticities vary with parental income for
current policies, this would not allow us to infer how these values change if policies change.

21The welfare weight and Ẽ(I) are de�ned in the same way, with the di�erence that Pt(X, I,G(I)) equals
one.
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about the returns to college for marginal students and therefore ∆T E(I). We now turn to a

simpli�ed version of the model to further explore this.

Simpli�ed Environment. We assume that preferences are linear in consumption and that

labor incomes are taxed linearly at rate τ . We consider a static problem. If individuals do not

go to college, they earn income yh. If they go to college, they pay tuition F and earn yh(1+θ).

Individuals are heterogeneous in ability/returns to college θ. There is no uncertainty. Further,

individuals are heterogeneous in parental income I. If individuals go to college, they receive

a parental transfer tr(I) with tr′(I) > 0 and �nancial aid G(I).

Individual Problem. If an individual decides against college, utility is given by UH =

(1−τ)yH . If an individual does go to college, utility is given by U
C(θ, I) = (1− τ) yH (1 + θ)−

(F − G(I)− tr(I)). For each income level I, we can de�ne the ability of the marginal college

graduate θ̃(I), implicitly given by UH = UC(θ̃(I), I). All types (θ, I) with θ ≥ (<)θ̃(I) (do

not) attend college.

Note that higher parental income here simply has the role of lowering the costs of college.

This implies that high-parental-income children are more likely to select into college. This

channel is reinforced if there is a positive association between I and θ.

Government Problem and Optimal Financial Aid for a Given I. To focus on the

e�ciency aspect of �nancial aid, we disregard distributional concerns and assume that the tax

rate τ is exogenously given. In particular, we focus on a government that extracts as many

resources as it can from its citizens and as a policy tool can use �nancial aid G(I). This shuts

down any redistributive case for progressive �nancial aid.22 The government's problem reads

as

max
G(I)

∫
R+

∫ θ̃(I)

θ

τyH dK(θ|I)dF (I) +

∫
R+

∫ θ

θ̃(I)

(τyH (1 + θ)−G(I)) dK(θ|I)dF (I). (8)

Di�erentiating this objective with respect to G(I) gives a rather tractable expression for

optimal �nancial aid G(I), which we state in the following proposition.

Proposition 2. The optimal �nancial aid schedule associated with (8) is given by

G(I) = τ (F − tr(I))− yH(1− τ)2

(
1−K(θ̃(I)|I)

)
k(θ̃(I)|I)

, (9)

22We could work with a more general welfare function here and obtain the same results about progressiv-
ity. The key implied aspect of the revenue maximization is that the government does not have a desire to
redistribute from children with high parental income to children with low parental income.
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where θ̃(I) = F−tr(I)−G(I)
(1−τ)yH

.

Proof. See Appendix A.4.

To understand the �rst term, note that tr(I) acts like a parental price subsidy. Hence,

F − tr(I) captures the costs of college for young individuals in the absence of government

subsidies. A level of the subsidy that is G(I) = τ (F − tr(I)) would then imply that the share

of the costs that are borne by the government equals the share of returns that are reaped by

the government, which would resemble the classic �siamese twins� result in a setting with a

continuous education choice as in Bovenberg and Jacobs (2005).

In this binary education choice model, such a level of the subsidy is a knife-edge case. It

would be optimal whenever the highest ability level θ̄ is equal to F−tr(I)
yH

. In that case, from a

�rst-best sense, college is only e�cient for the highest ability level, since for this ability level

the costs of education F − tr(I) are equal to the returns of education θ̄yH . If the government

sets the level of �nancial such that G(I) = τ (F − tr(I)), then only these individuals with the

highest ability go to college.

If, however, college is �rst-best e�cient up to an interior ability level θ∗ (i.e., θ > θ∗ =
F−tr(I)

yh
), then the subsidy will no longer be as generous such that all individuals with θ > θ∗

go to college. Instead, we will have θ̃(I) > θ∗, that is, not all individuals that should go to

college from a �rst-best perspective will go to college. The reason is that the government that

solves (8) cannot target subsidies to marginal students only and at the margin has to pay

more to the inframarginal students when increasing �nancial aid. How pro�table an increase

in grants is for the government also depends on the ratio of inframarginal students (to whom

the government only pays more) over marginal students (from whom the government receives

more than it pays, formally τ θ̃(I) > G(I)).23

As a consequence, the optimal level of �nancial aid for a given income level I depends on

the shape of the hazard rate of the skill distribution. Such distributional properties are then

also key for the question of how optimal �nancial aid varies with parental income.

Is Optimal Financial Aid Decreasing in Parental Income? We now proceed in two

steps and �rst state a result on the progressivity if parental income and child's ability are

independently distributed.

Corollary 3. Assume that ability θ and parental income I are independent, that is, K(θ|I) =

K(θ) ∀ θ, I. Then the optimal �nancial aid schedule is progressive (i.e., G ′(I) < 0 ∀ I) if the
distribution K(θ) is log concave.

Proof. See Appendix A.5.

23Another way to put this is that education does not follow a �rst best rule because the government can
partly tax the rents of inframarginal students.
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Intuitively, the �rst term in (9) is decreasing in I. Recall that this term captures the

`siamese twins logic' of Bovenberg and Jacobs (2005). The higher parental income, the lower

are the costs of college F − tr(I) and hence, for a given rate of subsidization τ , the lower is

the overall level of the subsidy.

Since θ̃′(I) < 0,24 the second term is decreasing in I if the inverse of the hazard rate of

K(θ) is decreasing. As Bagnoli and Bergstrom (2005) point out, log-concavity of a density

function is su�cient for an increasing hazard rate.25

Hence, in the illustrative case in which parental income and child's ability are iid, we have

an important benchmark, where the selection mechanism through parental income in itself

calls for progressive �nancial aid. Next we turn to the empirically more appealing case in

which parental income and ability are positively associated.26

Corollary 4. Assume that ability θ and parental income I are positively associated in the

sense that for I ′ > I, the distribution K(θ|I ′) dominates K(θ|I) in the hazard rate order, that

is,

∀θ, I, I ′ with I ′ > I :
k(θ|I)

1−K(θ|I)
≥ k(θ|I ′)

1−K(θ|I ′)
. (10)

Then the optimal �nancial aid schedule is progressive (i.e. G ′(I) < 0 ∀ I) if the conditional

skill distributions K(θ|I) are log concave.

Proof. See Appendix A.6.

Note that condition (10) is stronger than �rst-order stochastic dominance (FOSD) but

does imply that the skill distribution of higher parental income levels �rst-order stochastically

dominates the skill distribution of lower parental income levels. FOSD of the skill distribution,

however, does not automatically imply (10).27

For the empirically plausible Pareto distribution, FOSD does imply dominance in the hazard

rate order. Consider, for example, the speci�cation k(θ|I) = α(I) θα(I)

θα(I)+1 , where α(I) is the

thickness parameter. Here we have 1−K(θ|I)
k(θ|I) = θ

α(I)
and hence if α′(I) < 0, then the tail of

the skill distribution of high-parental-income children is thicker and the FOSD property is

ful�lled. Therefore, (10) is ful�lled.

24Note that for this we need tr′(I) + G′(I) > 0, i.e. that �nancial aid is not too progressive. As our proof
in Appendix A.5 shows, this is the case.

25Log-concavity of a probability distribution is a frequent condition used in many mechanism design or
contract theory applications, as this is "just enough special structure to yield a workable theory" (Bagnoli and
Bergstrom, 2005).

26As Carneiro and Heckman (2003, p.27) write: "Family income and child ability are positively correlated,
so one would expect higher returns to schooling for children of highincome families for this reason alone." In
a famous paper, Altonji and Dunn (1996) �nd higher returns to schooling for children with more-educated
parents than for children with less-educated parents.

27See, e.g., Shaked and Shanthikumar (2007, p.18).
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The goal of this section was to show that under some rather weak assumptions, optimal

�nancial aid is indeed decreasing in income. Whereas the simple model provides an interesting

and intuitive benchmark, a richer empirical model is needed to give more concrete policy

implications. In the next section we set up such a model and quantify it for the United States.

4 Quantitative Model and Estimation

We present our fully speci�ed structural model in Section 4.1 and the estimation of the model

and the data we use for that in Section 4.2. In Section 4.3 we show that the quantitative

model performs very well in replicating patterns in the data and some non-targeted quasi-

experimental evidence.

4.1 Quantitative Model

In this subsection, we present a fully speci�ed version of the model presented in Section 2.

We �rst specify the underlying heterogeneity in Section 4.1.1. We then present functional

form assumptions and further modeling assumptions that concern the problem of the children

once education is �nished (Section 4.1.2) and the education decisions (Section 4.1.3). Finally,

we provide a microfoundation for parental transfers by modeling the parental decision in

Section 4.1.4.

4.1.1 Heterogeneity

We �rst specify the underlying heterogeneity. Besides parental income I, individuals di�er

in X = (θ, s,ParEdu,Region), which captures ability, gender, their parents' education levels,

and the region in which they live.

4.1.2 Workforce Problem

Workers' �ow utility in the labor force is parameterized as

UW (ct, `t) =

(
ct − `1+εst

1+εs

)1−γ

1− γ
,

where the labor supply elasticity 1
εs

is allowed to vary by gender. Individuals work until 65

and start at age 18 in case they decide to not enroll in college. Each year, individuals in the

workforce make a labor-supply decision and a savings decision.28

Life-cycle wage paths depend on ability θ, gender s, education e, and on a permanent skill

shock that individuals draw upon �nishing education and entering the labor market. To avoid

28For brevity, we do not present the Bellman equations, which are standard.
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repeating ourselves and as this is a rather standard model element, we present the details of

the parameterization in the wage estimation section Section 4.2.3.

A high-school graduate who chooses to forgo college immediately learns her permanent

skill shock and enters the workforce.29 We assume that these individuals receive transfers

from their parents in the �rst period after labor market entry so that the initial level of assets

a1 = trH is equal to the parental transfer. Let the value of entering the workforce directly out

of high school be given by

V H
1

(
X, a1 = trH

)
= E

[
V W
t

(
X, e = H, a1 = trH , w1

)]
,

where the expectation is taken over the permanent skill shock.

4.1.3 College Problem

We now consider decisions of individuals that are enrolled in college. We assume that students

can choose to work part-time, full-time, or not at all. Formally, `Et ∈ {0, PT, FT}.
For �ow utility in college we assume the following functional form:

UE
(
ct, `

E
t ;X, ε`

E

t

)
=

c1−γ
t

1− γ
+ κX + ζ`

E
t + ε

`Et
t ,

where κX + ζ`
E
t + ε

`Et
t captures the nonpecuniary aspects of college. To follow the terminology

of the literature (Cunha et al., 2005; Heckman et al., 2006) we mainly refer to −(κX+ζ`
E
t +ε

`Et
t )

as psychic costs in the remainder of the paper. Concretely, κX is the (potentially negative)

amenity value of attending college. Workers of higher ability may �nd college easier and more

enjoyable and therefore may have additional nonpecuniary returns to college. Furthermore,

children with parents who attended college may �nd college easier, as they can learn from

their parents' experiences. Finally, we allow the amenity value of college to vary by an agent's

gender, to re�ect di�erences in college-going rates across genders. We parameterize it as

κX = κ0 + κθ log (θ) + κfemI (s = female) + κParEdParEdu.

The term −ζ`E is the cost of working in college,30 and ε`
E

t is a shock associated with

continuing college and working `E hours. This represents any idiosyncratic factors associated

with staying in college and working that are not captured elsewhere in the model. We assume

that the idiosyncratic preference shock, ε`
E

t , is distributed as a nested logit, with a separate

nest for the three options involving continuing in college and a separate nest for dropping out

of college. We denote the nesting parameter by λ and the scale parameter by σl
E
.

29We assume a no-borrowing constraint for high school graduates but our results are robust allowing for
borrowing over the life-cycle.

30We normalize ζ0 = 0 w.l.o.g.
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In contrast to the model in Section 2, we assume that graduation is stochastic if individ-

uals decide to not drop out. Agents do not graduate and remain in college with probability(
1− PrGradt

)
. This feature allows the model to accommodate heterogeneity in time until

graduation without modeling the decision to accumulate college credits and graduate.

We can therefore write the choice-speci�c Bellman equation of an agent who is enrolled in

college and works `Et ∈ {0, PT, FT} as

V
E,`Et
t

(
X, I, at, ε

`Et
t

)
= max

ct
[UE

(
ct, `

E
t , X, ε

`Et

)
+

β
{(

1− PrGradt

)
E
[
V E
t+1 (X, I, at+1, εt+t)

]
+ PrGradt E

[
V W
t+1 (X, e = G, at+1, wt+1)

]} (11)

subject to

ct = `Et ω + at − at+1 −FRegion + G (X, I)

and

at+1 ≥ āEt+1,

where V E
t+1 (X, I, at+1, εt+t) and εt+t are de�ned below. The term

[
V W
t+1 (X, e = G, at+1, wt+1)

]
is the expected value of being a college graduate in the workforce in year t + 1, where the

expectation is taken over the permanent skill shock.

We allow tuition, FRegion, to depend on the agent's region. This allows the model to

capture di�erences in tuition across geographic regions and is also helpful for identifying the

parameters of the model. Children receive a lump sum parental transfer the �rst year they

enroll in college, so initial assets are equal to parental transfers. Workers in college do not pay

interest on their loans, to re�ect the repayment schedule of the Sta�ord Loan program.

At the beginning of each period, the agent must either choose to drop out of college or choose

any of the three labor supply and college combinations. Agents who drop out of college pay a

nonpecuniary dropout cost δ and then make consumption/saving and labor supply decisions

for the remainder of their life. We can write an agent's problem at the beginning of the period

as:

V E
t (X, I, at, εt) =

max
{
V D
t (X, at)− δ, V E,0

t

(
X, I, at, ε

0
)
, V E,PT

t

(
X, I, at, ε

PT
)
, V E,FT

t

(
X, I, at, ε

FT
)}

,

where εt is the vector of choice-speci�c preference shocks.

Enrollment Decision. Finally, we turn to the crucial enrollment decision. At the beginning

of the model, children must decide whether to enter college or to enter the labor market

directly. We assume that agents receive an idiosyncratic type I extreme value preference shock

η with scale parameter ση, which re�ects idiosyncratic taste for college that is unre�ected
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elsewhere in the model. Therefore, we can write an individual's enrollment problem as a

function of the parental transfer functions:

V1

(
X, I, trH , trE

)
= max

{
V H

1

(
X, a1 = trH

)
,E
[
V E

1

(
X, I, a1 = trE, ε1

)]
+ η
}
.

We now turn to the parent's problem.

4.1.4 Parent's Problem

We model the parent's life-cycle. Each year the parent makes a consumption/saving decision.31

The parent also chooses how much to transfer to the child dependent on the child's education

choice. Therefore, the parent has to trade o� the utility of helping their child through parental

transfers with their own consumption.32

Parents make transfers to their child in the year in which a child graduates from high school.

We assume that parents commit to a transfer schedule before the child's initial enrollment

shock, η, and wage shock, v, are realized. This simpli�es the model solution considerably.33

For all years when the transfer is not given the parent simply chooses how much to consume

and save.34 The parent's Bellman equation and details on the calibration of life-cycle parental

earnings are given in Appendix B.5. In the main body, we only elaborate on the element of

the utility function that arises due to transfers.

In the year of the transfer, the parent receives utility from transfers. Let F
(
trH , trE, X, I

)
represent the expected utility the parent receives from the transfer schedule trH , trE, condi-

tional on a child with initial state space (X, I). We assume that F consists of three com-

ponents. First, parents are altruistic; they care about their child's expected lifetime utility.

Second, parents are paternalistic; they receive prestige utility if the child attends college. Fi-

nally, parents receive warm-glow utility from transfers that is independent of how the transfer

a�ects the child's utility or choices. Each of these three components helps us to match key fea-

tures of the relationship between parental transfers, parental income, and the child's problem.

Allowing for utility from warm-glow helps us to match the gradient between parental income

31For simplicity, we do not model the parent's labor supply decision. The parent only chooses consumption,
savings, and transfers.

32Parent's decisions only enter the child's problem through parental transfers; we do not model fertility
choice or parental investments in the child's development. In Section 7.4 we consider an extension of the model
in which a child's ability is determined endogenously as a function of parental investment. We show that the
optimal �nancial aid schedule is still highly progressive in this setting.

33If not, the child will have to take into account how parental transfers will respond to their preferences
and ability shocks which they partially reveal through their college choice.

34The fact that parents provide all transfers based on the initial enrollment decision can give the incentive
to strategically enroll for one year and then drop out directly only to obtain the larger parental transfer. This
is one reason for why we incorporated the dropout costs δ, which makes such strategic behavior less attractive.
As we show in Section 4.3, our model performs well regarding the dynamics of dropout and graduation.
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and transfers.35 Allowing the parents to receive utility from altruism, which is probably the

most standard element, allows for the possibility that changes in the �nancial aid schedule

crowd out parental transfers. If �nancial aid increases, parental transfers may decrease in

response. Allowing for paternalism allows us to match the level of college transfers relative to

transfers for children who forgo college and adds an additional crowding-out element.

Speci�cally, we write the parent's expected utility from transfers as

F
(
trH , trE, X, I

)
= ωE

[
V1

(
X, I, trH , trE

)]
︸ ︷︷ ︸

Altruism

+E

ξParEdu1E︸ ︷︷ ︸
Paternalism

+φ
(cb + tre)1−γ

1− γ︸ ︷︷ ︸
Warm Glow


where 1E is a dummy indicating that the child enrolls in college. The �rst term measures

the parent's utility derived from altruism. The term ω measures the weight the parent places

on the child's lifetime expected utility. The next term measures utility from paternalism.

ξParEd captures the �prestige� value of having a child attending college. This captures any

additional utility a parent gets from a child attending college in addition to the direct utility

for the child. We allow this parameter to vary by the parent's education level. The �nal term

measures utility from warm-glow, where we adopt the the functional form commonly used in

the literature (De Nardi, 2004). The parameter φ measures the strength of the warm-glow

incentive, and cb measures the extent to which parental transfers are a luxury good.

4.2 Estimation and Data

To bring our model to the data, we make use of the National Longitudinal Survey of Youth

97 (henceforth NLSY97). A big advantage of this data set is that it contains information

on parental income and the Armed Forces Quali�cation Test score (AFQT-score) for most

individuals. The latter is a cognitive ability score for high school students that is conducted

by the US army. The test score is a good signal of ability. Cunha et al. (2011), for example,

show that it is the most precise signal of innate ability among comparable scores in other

data sets. We use the NLSY97 for data on college-going, working in college, dropout, parental

transfers, and grant receipts.36 Since individuals in the NLSY97 are born between 1980 and

1984, not enough information about their later-life earnings is available. We therefore also use

the NLSY79 to better understand how earnings evolve throughout an agent's life. Combining

both data sets has proven to be a fruitful way in the literature to overcome the limitations

35Even without warm-glow utility, parental transfers will generally be increasing in parental income as the
marginal cost of transfers are higher for low income families. However, including warm-glow allows us to match
the relationship between parental income and transfers much more closely. Given that the focus of this paper
is the di�erences in college-going by parental income level, we chose to include warm-glow utility here in order
to closely match this relationship.

36We calculate parental transfers using the same method as Johnson (2013) which involves summing direct
parental transfers and the monetary value of living at home if the individual lives with his parents.
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of each individual data set; see Johnson (2013) and Abbott et al. (2018). The underlying

assumption is that the relation between the AFQT score and wages has not changed over that

time period. We use the method of Altonji et al. (2012) to make the AFQT scores comparable

between the two samples and di�erent age groups.

We de�ne an individual as a college graduate if she has completed at least a bachelor's

degree. An individual is considered enrolled in college in a given year if they report being

enrolled in college for at least six months in a given academic year. Individuals who report

enrolling for at least one year in a four-year college but do not report a bachelor's degree

are considered dropouts. Agents who never enroll in college are considered as high school

graduates. Since individuals in the NLSY97 turn 18 years old between 1998 and 2002, we

express all US dollar amounts in year 2000 dollars. We drop individuals with missing values

for key variables. We also drop individuals who take o� one year or more of college before

re-enrolling. These agents constitute 11% of the sample. For the variable Region, we consider

the four regions for which we have information in the NLSY: Northeast, North Central, South,

and West.

An overview of our calibration and estimation procedure is given in Table 1. First of all, to

quantify the joint distribution of parental income and ability, we take the cross-sectional joint

distribution in the NLSY97. We chose PrGradt as the fraction of continuing students in the

NLSY97 who graduate each year. We assume that all agents in the model have to graduate

after six years by setting PrGrad6 = 1. We then proceed in four steps:

1. We calibrate and preset a few parameters in Section 4.2.1.

2. We calibrate current US tax and college policies in Section 4.2.2.

3. We estimate the parameters of the wage function in Section 4.2.3.

4. Based on that, we estimate the parameters of the child's and parent's utility via maxi-

mum likelihood. The likelihood function is discussed in Section 4.2.4. In Section 4.2.5

we provide a discussion of identi�cation and in Section 4.2.6, we present the likelihood

estimates.

4.2.1 Calibrated Parameters

We set the risk-free interest rate to 3% (i.e., r = 0.03) and assume that individuals' discount

factor is β = 1
1+r

. For the labor supply elasticity, we choose ε = 5 for men and ε = 1.66

for women, which imply compensated labor supply elasticities of 0.2 and 0.6, respectively.37

Note that the value of the labor supply elasticity does not in�uence our results about optimal

37See Blau and Kahn (2007) for a discussion of labor supply di�erences across gender. Our results are
robust to assuming smaller gender di�erences in labor supply behavior and also larger di�erences. The labor
supply elasticity is in general not a crucial parameter for optimal �nancial aid.
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Table 1: Parameters and Targets

Object Description Procedure/Target

F (I) Marginal distribution of parental income Directly taken from NSLY97
(θ, I) Joint and conditional distribution of innate abilities Directly taken from NSLY97
r = 0.03 Interest Rate
εMen = 5 Inverse Labor Supply Elasticity for Men
εWomen = 1.66 Inverse Labor Supply Elasticity for Women
PrGradt Graduation Probabilities Directly taken from NSLY97

Wage Parameters Estimated from regressions
Parameters of Child and Parental Utility Maximum Likelihood (Table 2)

Current Policies

L̄ Sta�ord Loan Maximum Value in year 2000
T (y) Current Tax Function Heathcote et al. (2017)
G(θ, I) Need- and Merit-Based Grants Estimated from regressions

�nancial aid for given taxes in our benchmark because we calibrate wages from elasticities and

income as in Saez (2001). We are more explicit about that in Section 4.2.3.

4.2.2 Calibration of Current Policies

To capture current tax policies, we use the approximation of Heathcote et al. (2017), which

has been shown to work well in replicating the US tax code. Since this speci�cation does

not contain a lump-sum element, we slightly adjust this schedule (see Appendix B.1 for more

details). For tuition costs, we take average values for the year 2000 from Snyder and Ho�man

(2001) for the regions Northeast, North Central, South, and West, as they are de�ned in the

NLSY. We also take into account the amount of money that is spent per student by public

appropriations, which has to be taken into account for the �scal externality. Both procedures

are described in detail in Appendix B.2. The average values are $7,434 for annual tuition and

$4,157 for annual public appropriations per student. Besides these implicit subsidies, students

receive explicit subsidies in the form of grants and tuition waivers. We estimate how this grant

receipt varies with parental income and ability in Appendix B.3 using information provided

in the NLSY97. We �nd a strong negative e�ect of parental income on �nancial aid receipt.

Additionally, we can capture merit-based grants by the conditional correlation of AFQT scores

with grant receipt. Finally, we calibrate the exogenous budget element F̄ in the following way.

For the current U.S. polices, we calculate the present value of �nancial aid spending and the

present value of tax revenues collected from the cohorts that we consider (born between 1980

and 1984 from the NLSY97) and obtain F̄ from the di�erence between the two.

Finally, we make the assumption that individuals can only borrow through the public loan

system. In the year 2000, the maximum amount for Sta�ord Loans per student was $23,000.
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We examine the sensitivity of this assumption in Sections 7.1 and 7.6, where we show that

(i) the optimal �nancial aid schedule is still highly progressive when borrowing constraints

are relaxed and (ii) the policy implications are very similar if we reestimate the model with

borrowing limits that depend on parental resources.

4.2.3 Wage Estimation

We specify and estimate wage life-cycle paths as follows. Our procedure �rst estimates labor

earnings life-cycle pro�les and then calibrates the respective wage pro�les based on those

estimates in a second step. Speci�cally, we use the following functional form for earnings y :

∀ e = H,G : log yeit = βes0 + βeθ log θi + βet1t+ βet2t
2 + βet3t

3 + ve∗i . (12)

We estimate separate parameters for high school graduates and college graduates.38 The

parameter βeθ captures di�erent returns to ability for agents of a given education level. The

extent to which the college wage premium is increasing in ability is determined by the ratio
βGθ
βHθ

. We �nd a ratio larger than 1, which implies a complementary relationship between initial

ability and education. Our estimates can be found in Appendix B.4. ve
∗
i is a random e�ect

that captures persistent di�erences in wages conditional on the agent's schooling choice. We

assume that agents do not know the value of ve
∗
i at the beginning of the model, but that

its value is revealed as soon as the agents �nish their education and enter the labor market.

Uncertainty over ve
∗
i creates uncertainty over an agent's returns to college. After ve

∗
i there is

no further uncertainty about an agent's wage path.

The age earnings coe�cients βet1, β
e
t2 and β

e
t3 are education dependent but independent from

gender. However, since we assume di�erent labor supply elasticities for men and women, the

implied wage life-cycle pro�les will di�er across gender because how a given earnings path

maps into wages depends on the labor supply elasticity, see Appendix B.4 for details. The

age coe�cients are estimated from the NLSY79 since individuals from the NLSY97 are only

observed until their mid-30s. Our approach to estimating the relationship between innate

ability, education, and labor market outcomes is similar to Abbott et al. (2018) and Johnson

(2013). Given that the approach is rather standard except that we estimate coe�cients on

earnings instead of wages to obtain more realistic income distributions, we only report the

estimates in Appendix B.4. There, we also explain how we add Pareto tails to the implied

income distributions to account for undersampling of top incomes in the NLSY and how

we calibrate the wage process from the incomes process similarly as Saez (2001) in a static

framework.

38Dropouts have the same wage parameters as high school graduates except for the constant term. This
gives us a very good �t for the relative earnings of dropouts, consistent with the evidence in Lee et al. (2017).
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In sum, this procedure pins down a stochastic distribution of potential life-cycle wage

paths for each individual, which depend on gender, ability, and the education decisions. We

demonstrate in Section 4.3 that we obtain life-cycle paths of earnings and wages which are

consistent with the data.39

4.2.4 Likelihood Function

We estimate the remaining parameters with maximum likelihood. An agent's likelihood con-

tribution consists of 1) the contribution of their initial college choice, 2) the contribution of

their labor supply and continuation decision each year in college, and 3) the contribution of

their realized parental transfers. Let Γ denote a vector of structural parameters. The set

of parameters estimated via maximum likelihood consists of the CRRA parameter, γ, the

set of parameters governing the amenity value of college and working in college, κX and ζ,

the dropout cost, δ, the parameters governing the parent's altruism, paternalism, and warm

glow, ω, ξParEd, φ and cb, the parameters governing the distribution of the college enrollment

and working in college preference shocks: ση, σ`
E
and λ, and the standard deviation of the

measurement error of parental transfers, σe
tr
.

We assume that parental transfers are measured with normally distributed measurement

error. Assume that the econometrician observes transfers tre,oi , which di�er from true transfers,

tre?i , by an error term etr. Further, we assume this error term is normally distributed: etr ∼
N
(
0, σe

tr)
. We suppress all dependencies for notational convenience. Then, given parameters

Γ, the likelihood contribution of an agent who graduates from college after TEi years, has a

sequence of work in college decisions of
{
`Eit
}TEi
t=1

, and has observed college transfers trE,oi is40

Li
(
ei = G, trE,oi ,

{
`Eit
}TEi
t=1
|Γ
)

=

Pr (E)φ

(
trE?i − tr

E,o
i

σetr

)
1

σetr

 TEi∏
t=1

Pr
(
`Eit
) ,

(13)

where the probability of initially enrolling in college, Pr (E), and the choice probability of

not dropping out and working `Eit in college, Pr
(
`Eit
)
, are given by the extreme-value choice

probabilities as

Pr (E) =
exp

(
V E

1 /σ
η
)

exp (V E
1 /σ

η) + exp (V H
1 /ση)

39We use these same parameter estimates to calculate life-cycle earnings for parents. We choose the id-
iosyncratic competent of earnings, ve∗i , to generate earnings at age 45 equal to the parental earnings levels we
observe in the data.

40The probability of this event in fact also depends on the graduation probabilities PrGradt . But these are
just constant factors in the likelihood, which is why refrain from putting them here.
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and

Pr
(
`Et
)

=
exp

(
V E,`E

t /(σ`
E
λ)
)(∑

l∈{0,PT,FT} exp
(
V E,l
t /(σ`

E
λ)
))λ−1

(
exp

(
V D − δ/σ`E

))
+
(∑

l∈{0,PT,FT} exp
(
V E,l
t /(σ`Eλ)

))λ ,
where ση and σ`

E
are parameters governing the variance of the enrollment shock and college

working shock, respectively, and λ is a nesting parameter.

The likelihood contribution of an agent who drops out in year TDi , has a sequence of work

in college decisions of
{
`Eit
}T dropout−1

t=1
, and has observed college transfers trE,oi is

Li
(
ei = D, trE,oi ,

{
`Eit
}TDi −1

t=1
|Γ
)

=

Pr (E)φ

(
trE?i − tr

E,o
i

σetr

)
1

σetr

TDi −1∏
t=1

Pr
(
`Eit
)Pr (DTD) ,

(14)

where the probability of dropping out, Pr (DTD), is given by the extreme value choice proba-

bilities as

Pr (DTD) =

(
exp

(
V D
TD/σ

`E
))

(
exp

(
V D
TD
/σ`E

))
+
(∑

l∈{0,PT,FT} exp
(
V E,l
TD
/(σ`Eλ)

))λ .
The likelihood function of an agent who enters the labor force directly and is observed with

transfers trH,oi is given by

Li
(
ei = H, trH,oi |Γ

)
= (1− Pr (E))φ

(
trH?i − tr

H,o
i

σetr

)
1

σetr
. (15)

We therefore choose the parameters Γ to maximize the log likelihood:

max
Γ

∑
i

logLi (·|Γ) .

4.2.5 Identi�cation

The parameter γ and the parameter governing the variance of the college-enrollment preference

shock, ση, play crucial roles in our analysis as they determine the extent to which increasing

�nancial aid a�ects the college enrollment decision. Higher values of ση and lower values

of γ imply a smaller elasticity of enrollment with respect to increases in �nancial aid. These

parameters are jointly identi�ed by the relationship between enrollment and parental income of

otherwise similar individuals. Enrolling in college will generally imply lower net income while
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enrolled in college and higher income later in life. To the extent that borrowing constraints

are e�ective and that parental transfers are increasing in parental income, children from lower-

income backgrounds will not be able to smooth consumption and therefore will have lower

consumption in their early life. The parameter γ determines the cost of not being able to

smooth consumption early in life. A high value of γ therefore implies low college enrollment

for individuals close to the borrowing constraint.

Furthermore, exclusion restrictions in the grant function help us to identify the elasticity

of college going with respect to �nancial aid. The number of siblings enters the formula for

�nancial aid but does not a�ect the child's utility in college or his earnings directly (Brown

et al., 2012). Therefore, di�erent college-going and working choices of similar agents with

di�erent number of siblings helps us to identify γ and ση. Finally, tuition varies by region but

region does not enter the earnings function or utility function. Therefore, similar to Heckman

et al. (1998), variation in tuition levels creates variation in the value of college enrollment

which helps us to identify γ and ση.

Additionally, the extent to which poor students are more likely to work than rich students

will be governed by γ; this tells us how much more students who are close to the borrowing

constraint are willing to work relative to those who are not. As such, we can identify γ by

comparing the labor supply decisions of poor students with those from rich students.

The amenity value of college, κX , is identi�ed by di�erent rates of attending college by

ability, gender, and parental education, after controlling for di�erences in utility coming from

consumption and di�erences in future earnings. The parameters governing the value of working

in college, ζ, σ`
E
, and λ, are jointly identi�ed by variation in college labor supply choices

across agents and across periods. Speci�cally, the parameter vector ζ is identi�ed by di�erent

rates of working in college after controlling for di�erences in utility coming from consumption

and di�erences in future earnings. The parameter governing the variance of the labor supply

shock, σ`
E
, is identi�ed by variation in the timing of working in college decisions. For example,

suppose that σ`
E

= 0. Then the labor supply decisions of identical agents would be exactly

the same in each period. A larger σ`
E
implies more variation in the labor supply choices of

identical agents and across periods. The nesting parameter λ, is identi�ed by the substitution

patterns across labor supply decisions and dropping out.

The warm-glow parameters, φ and cb, are identi�ed by the relationship between parental

income and parental transfers. A larger value of φ increases the derivative of parental transfers

on parental income. Decreasing cb increases the level of transfers overall. Warm-glow utility

only depends on the amount of transfers given, not on other things that may enter the child's

problem (i.e., ability, tuition, number of siblings). The degree to which parental transfers

respond to di�erent children's characteristics will instead be determined by the strength of the

altruism motive. Therefore, any di�erences in parental transfers across student characteristics
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Table 2: Maximum Likelihood estimates

Estimate Standard Error

College Utility: UE (c, `) = c1−γ

1−γ + κθ,d + ζ`
E

+ ε`
E

it

Curvature of Utility γ 1.9 0.0042
No work ζ0 0 (Normalization)
Part time ζ1 -0.055 0.067?

Full time ζ2 -0.18 0.17?

Standard Deviation of Enrollment Shock σE 5.8? .089?

Dropout cost δ 1.3 0.61?

Standard Deviation of Working Shock σ`
E

0.49 .039?

Nesting Parameter λ 0.59 0.13?

College Amenity: κθ,d = κ0 + κθ log (θi) + κfemI (s = female) + κParEdParEdui

Constant κ0 -0.44 0.032?

Ability Interaction κθ 7.5? 0.016?

Female Dummy κfem 0.058? 0.0037?

Parental Education κParEd 1.1? 0.025?

Parental Utility from Transfers:

F
(
trH , trE ,Ωi

)
= ωEV

(
Ωi|trH , trE

)
︸ ︷︷ ︸

Altruism

+E

ξParEdui)I (ei = E)︸ ︷︷ ︸
Paternalism

+φ
(cb + tre)

1−γ

1− γ︸ ︷︷ ︸
Warm Glow


Altruism ω 3.5? 0.032?

Prestige Constant ξ0 0.0101? 0.00083?

Parent's Education Interaction ξParEd 0.0036? 0.00084?

Warm Glow Strength φ 0.14 0.0018
Warm Glow Level cb 23.5 0.010
? we display 10,000 times the parameter value.

will identify ω. For example, if students who face higher tuition levels generally receive higher

parental transfers, this will identify ω and give us a sense of how much we expect parental

transfers to be crowded out by �nancial aid. Parents' paternalism parameters, ξParEd, are

identi�ed by the ratio of college parental transfers to high school parental transfers. A higher

value of ξParEd implies higher transfers for children going to college relative to transfers for

children entering the labor force directly.

Finally, the parameter governing the standard deviation of observed parental transfers, σe
tr
,

is identi�ed by the variance in observed parental transfers of identical agents.

4.2.6 Maximum Likelihood Estimates

The maximum likelihood estimates are shown in Table 2. In this section we discuss the

estimates of several of the key parameters. This section is intentionally brief, as the magnitude

of the parameters is di�cult to interpret in a vacuum. In the following section, we compare

the results from the model to the data and to reduced-form evidence of college-going as we

believe this is a more informative way to assess the model's performance.
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The parameter γ governs the curvature of the utility function with respect to consumption

and plays a key role in determining an agent's risk aversion. We estimate γ = 1.93, which

is in the middle of the range of estimates from the literature. As mentioned earlier, γ, along

with the variance of the college-going shock plays an important role in dictating the elasticity

of college enrollment with respect to �nancial aid. In the next section, we show that this

elasticity is consistent with estimates from the reduced-form literature.

The parameter vector ζ gives the amenity value of not working, working part-time, and

working full-time in college. We normalize the amenity of not working in college to ζ0 = 0.

Students pay a relative large nonpecuniary cost to work full-time in college and a pay a

smaller nonpecuniary cost to work part-time. We estimate a nonpecuniary cost associated

with dropping out of 1.3, implying that dropping out involves an additional utility cost in

addition to potential forgone earnings. The parameters governing the amenity value of college

are κ0, κθ, κfem, and κParEd. Our estimates of these parameters imply that the nonpecuniary

value of college is increasing in an agent's ability and parental education. Furthermore, females

receive a higher amenity value of college relative to men, re�ecting the fact that women attend

college in high numbers despite lower monetary returns than men.

The parameters in the bottom panel of Table 2 govern parental transfers. As we are the

�rst paper to combine these transfer motives, it is di�cult to directly compare our parameter

estimates to those from the literature. However, all the parameters show the expected sign,

indicating that parents are imperfectly altruistic, receive paternalistic utility when their chil-

dren attend college and this e�ect is larger when parents have attended college themselves,

and receive positive warm glow utility from giving parental transfers to their children. Finally,

note that all estimates are statistically signi�cant at the conventional levels.

4.3 Model Performance and Relation to Empirical Evidence

In order to assess the suitability of the model for policy analysis, we look at how well it

replicates well-known �ndings from the empirical literature and especially quasi-experimental

studies.

4.3.1 Model Fit

Enrollment, Graduation and Dropout. Figure 1 illustrates enrollment and graduation

rates as a function of parental income and AFQT scores in percentiles, respectively. The

solid lines indicate results from the model, and the dashed lines are from the data. The

relationships in general are well �tted, though we slightly underestimate the parental income

gradient on enrollment rates and the relationship between graduation and AFQT scores. The

overall number of individuals who enroll in college is 40.0% in our sample and 39.5% in our

model. In our model, 27.7% of agents graduate from college compared to 29.8% in the data.
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Data from the US Census Bureau are very similar: in 2009 the share of individuals aged 25-29

holding a bachelor's degree is 30.6% � a number that comes very close to our data, where we

look at cohorts born between 1980 and 1984. Figure 18 in Appendix B.6 displays enrollment

rates by gender. As we can see, the model matches di�erences in college enrollment rates by

gender.

(a) Enrollment Rates and Parental In-
come

(b) Enrollment Rates and AFQT

(c) Graduation Rates and Parental In-
come

(d) Graduation Rates and AFQT

Figure 1: Graduation and Enrollment Rates

Notes: The solid (red) line shows simulated enrollment and graduation shares by parental income

and AFQT percentile. This is compared to the dashed (black) line which shows the shares in the

data.

To get a better sense of how dropout and graduation rates evolve over an individual's time

in college, Figure 2 shows graduation and dropout fractions over time in the model and the

data. The solid red line and the dashed black line show the fraction of the total population

that have graduated as a function of number of years of college completed in the model and the

data, respectively. In both the model and the data, graduation rates are very low for students

with less than three years of college. Graduation shares peak at four years before decreasing.

The dashed-dotted blue line and the dotted green line show the fraction of students that drop

out in each year in the model and data, respectively. Dropout shares are slightly downward

sloping as a function of years in college in both the model and the data. This slope is slightly

steeper in the model compared to the data.
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Figure 2: Graduation and Dropout Over Time

Notes: Implied graduation and dropout rates in the model versus the NLSY97.

Parental Transfers. Di�erences in parental transfers across parental income levels can also

play a role in generating di�erential college-going rates across income groups. We analyze the

�t of our model with respect to parental transfers in Figure 3. We can see that college transfers

are strongly increasing in parental income in both the model and data, though our model

slightly overestimates the relation in the data. The average college transfer for enrollees with

below-median parental income is $47,000 in the model compared to $48,000 in the data, while

the average college transfer for enrollees with above-median parental income is $60,000 in the

model compared to $59,000 in the data. The model does a good job of matching the average

level of high school transfers; the average high school transfers in the model and data are

both roughly $39,800. While in our simulations high school transfers are increasing globally

in parental income, parental transfers for high school graduates in the data are decreasing for

the highest-income children.41

Working During College. We match average hours worked quite well. The average college

student in our simulation works 16.23 hours per week compared to 17.39 in the data.42 We

observe a weak negative relationship between parental income and working during college in

the model and the data.

Earnings and College Premia. Table 3 analyzes the performance of the model with

respect to earnings dynamics. We can only compare the model to the NLSY97 data up to

41A reasonable suspicion is that this partly re�ects measurement error because the set of high-income
children who never enroll in college is relatively small. Our parameter estimates were robust ignoring this set
of individuals in the estimation.

42Note that average hours of work are calculated using data from the entire year and thus include work
during summer break.
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Figure 3: College Transfers and Parental Income
Notes: Present value of parental transfers given by parents of college enrollees and non-enrollees in

data (NLSY97) versus model.

Mean Earnings
College Premia SD(log (y))

Age High-School College

j Model Data Model Data Model Data Model Data

25 22,760 21,348 27,225 25,205 1.20 1.18 0.66 0.59
26 23,563 22,407 29,681 28,300 1.26 1.26 0.67 0.60
27 24,358 23,340 32,185 31,781 1.32 1.36 0.67 0.61
28 25,143 24,022 34,718 33,840 1.38 1.41 0.68 0.62
29 25,914 25,217 37,261 36,254 1.44 1.44 0.69 0.65
30 26,668 25,306 39,795 37,904 1.49 1.50 0.70 0.65
31 27,402 26,449 42,302 40,904 1.54 1.55 0.70 0.66
32 28,114 27,346 44,763 42,954 1.59 1.57 0.71 0.67
33 28,799 28,680 47,161 44,346 1.64 1.55 0.72 0.68
34 29,456 30,494 49,480 46,872 1.68 1.54 0.72 0.67

Notes: Data based on NLSY97 with cohorts born between 1980 and 1984. Mean

earnings expressed in year 2000 dollars. Most recent wave from 2015. Model based

moment results represent results from estimated model. Zero and small earnings

below $300 a month excluded. SD(log y) equal to standard deviation of log earn-

ings. NLSY97 is top coded at income levels around $155,000.

Table 3: Earnings Dynamics

age 34 since cohorts in the NLSY97 are born between 1980 and 1984. The simulated mean

earnings across ages are very close to those in the data. As described in Section 4, we account

for top-coding of earnings data by appending Pareto tails to the observed earnings distribution.

As such, average earnings are slightly larger in model as compared to the data. We match

college earnings premia very closely until around age 32. After that, the model and data

diverge slightly as more and more college students reach top-coded earnings in the NLSY97.
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In Figure 19 in Appendix B.7, we plot the implied earnings pro�les in the model over the full

range of ages.

The e�ect of the fatter right tails we include in the model can also be seen in the �t of

standard deviation of log earnings. The simulated standard deviation of log earnings is 4-7

log points higher than that in the data from age 25 to age 34.

The college-earnings premium averaged across all ages greater than 25 in our model is

83%, that is, the average income of a college graduate is nearly twice as high as the average

income of a high school graduate. This is well in line with empirical evidence in Oreopoulos

and Petronijevic (2013); see also Lee et al. (2017). Doing the counterfactual experiment and

asking how much the college enrollees would earn if they had not gone to college, we �nd a

return of 12.5% for one year of schooling, which is in the upper half of the range of values

found in Mincer equations (Card, 1999; Oreopoulos and Petronijevic, 2013).

4.3.2 Untargeted Moments

Responsiveness of Enrollment to Grant Increases. Many papers have analyzed the

impact of increases in grants or decreases in tuition on college enrollment. Kane (2006)

and Deming and Dynarski (2009) survey the literature. The estimated impact of a $1,000

increase in yearly grants (or a respective reduction in tuition) on enrollment ranges from 1

to 6 percentage points, depending on the policy reform and research design. A more recent

study by Castleman and Long (2016) looks at the impact of grants targeted to low-income

children. Applying a regression-discontinuity design for need-based �nancial aid in Florida

(Florida Student Access Grant), they �nd that a $1,000 increase in yearly grants for children

with parental income around $30,000 increases enrollment by 2.5 percentage points.

Simulating a $1,000 increase in �nancial aid for all individuals in our model leads to a 1.48

percentage point increase in overall enrollment rates and a 1.61 percentage point increase for

students near the studied discontinuity in Castleman and Long (2016). Overall, our simulated

elasticities are fairly consistent with these reduced-form estimates. This gives us con�dence

in our maximum likelihood estimates, especially given that these reduced form estimates were

not targeted in estimation.

Importance of Parental Income. A well-known empirical fact is that individuals with

higher parental income are more likely to receive a college degree (see also Figure 1). However,

it is not obvious whether this is primarily driven by parental income itself or by variables

correlated with parental income and college graduation. Using income tax data and a research

design exploiting parental layo�s, Hilger (2016) �nds that a $1,000 increase in parental income

leads to an increase in college enrollment of 0.43 percentage points. To test our model, we

increased parental income for each individual by $1,000 and obtained increases in college
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enrollment by 0.24 percentage points. Our model predicts a moderate direct e�ect of parental

income, smaller but in line with Hilger (2016).

Returns for Marginal Students. We �nd a return to one year of schooling of 12.1% for

marginal students. This re�ects that marginal students are of lower ability on average than

inframarginal students and is also in line with Oreopoulos and Petronijevic (2013). A clean way

to infer returns for marginal students is found in Zimmerman (2014). In his study, students

are marginal with respect to academic ability, measured by a GPA admission cuto�. He �nds

that these students have earnings 22% higher than those just below the cuto�, when earnings

are measured 8 to 14 years after high school graduation. We perform a similar simulation and

make use of the fact that the NLSY also provides GPA data. In fact, our model gives a return

to college of 24.1%, measured 8 to 14 years after high school graduation, for students with a

GPA in this neighborhood.43

5 Results: Optimal Financial Aid

We now present our quantitative results for optimal �nancial aid. We �rst present the Utili-

tarian benchmark in Section 5.1. We next show that results are robust to the welfare function

and also hold if the government only wants to maximize tax revenue in Section 5.2. We

show that a larger degree of progressivity can be implemented in a Pareto-improving way in

Section 5.3.

5.1 Optimal (Need-Based) Financial Aid

For our �rst policy experiment, we ask which levels of �nancial aid for di�erent parental

income levels maximize Utilitarian welfare. For this experiment, we do not change taxes or

any other policy instrument but instead only vary the targeting of �nancial aid. Additionally,

we work under the constraint that �nancial aid is nonnegative everywhere.44 At this stage, we

leave the merit-based element of current �nancial aid policies unchanged, that is, we do not

change the gradient of �nancial aid in merit and show the �nancial aid level for the median

ability level. In Section 7.2, we show that our main result also extends to the case in which

the merit-based elements are chosen optimally.

43Finally, we do not account for di�ering rates of unemployment and disability insurance rates. Both
numbers are typically found to be only half as large for college graduates (see Oreopoulos and Petronijevic
(2013) for unemployment and Laun and Wallenius (2016) for disability insurance). Further, the �scal costs
of Medicare are likely to be much lower for individuals with a college degree. Lastly, we assume that all
individuals work until 65 not taking into account that college graduates on average work longer (Laun and
Wallenius, 2016). These facts would generally strengthen the case for an increase in college subsidies.

44Relaxing this, one would get a negative subsidy at high parental income levels but nothing substantial
changes in terms of results.
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(a) Financial Aid (b) Graduation Rates

Figure 4: Optimal versus Current Financial Aid

Notes: Optimal �nancial aid with a Utilitarian welfare function and current �nancial aid in Panel

(a). In Panel (b) we display the college graduation share by parental income group.

Figure 4(a) illustrates our main result for the benchmark case. Optimal �nancial aid is

strongly decreasing in parental income. Compared to current policies, �nancial aid is higher

for students with parental income below $80,000. This change in �nancial aid policies is

mirrored in the change in college graduation, as shown in Figure 4(b). The total graduation

rate increases by 2.8 percentage points to 32.4%. This number highlights the e�cient character

of this reform.

5.2 Tax-Revenue-Maximizing Financial Aid

One might be suspicious of whether the progressivity is driven by a desire for redistribution

from rich to poor students that results in declining welfare weights.45 If this were the case, the

question would naturally arise whether the �nancial aid system is the best means of doing so.

However, we now show that the result holds even in the absence of redistributive purposes. We

ask the following question: how should a government that is only interested in maximizing tax

revenue (net of expenditures for �nancial aid) set �nancial aid policies? Figure 5(a) provides

the answer: revenue-maximizing �nancial aid in this case is very progressive as well. Whereas

the overall level of �nancial aid is naturally lower if the consumption utility of students is

not valued, the declining pattern is basically una�ected. For lower parental income levels,

revenue-maximizing aid is more generous than the current schedule, which implies that an

45In fact, 1−WC(I), which is the relevant term for the formula, increases from around 0.32 to around 0.75 at
the top, so by a factor of around 2.3. Note that this welfare weight is de�ned such that it accounts for crowding
out of parental transfers. In fact, we �nd that crowding out is stronger for high parental income students.
Going from the lowest to the highest parental income, the crowding out rate is monotonically increasing from
9% to 21%. The fact that 1 −WC(I) increases by a factor of 2.3 is hence not only due to the Utilitarian
welfare function but also due to the fact that an increase in �nancial aid reaches the poorest students to 91%
while only to 79% for the kids with the highest parental income.
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increase must be more than self-�nancing. We study this in more detail in Section 5.3. The

implied graduation patterns are illustrated in Figure 5(b).

(a) Financial Aid (b) Graduation Rates

Figure 5: Tax-Revenue-Maximizing Financial Aid Policies

Notes: The dashed-dotted (blue) line shows the optimal schedule under the objective of maximizing

net-tax revenue (net of expenditures for �nancial aid). Optimal �nancial aid with a Utilitarian

welfare function and current �nancial aid are also shown for comparison in Panel (a). In Panel (b)

we display the college graduation share by parental income group for each of the three scenarios.

5.3 Pareto-Improving Reforms

As anticipated in Section 5.2, an increase in �nancial aid can be self-�nancing if properly

targeted. The solid red line in Figure 6 illustrates the �scal return as de�ned in (6), that

is, the net e�ect on government revenue were �nancial aid for a particular income level to

be increased by $1. Returns are positive for parental income between $0 and $23,000; the

latter number corresponds to the 21st percentile of the parental income distribution. This

result is striking: increasing subsidies for this group is a free lunch. An alternative would

be to consider reforms where �nancial aid is increased for students below a certain parental

income level. This case is illustrated by the dashed-dotted blue line in Figure 6. An increase

in �nancial aid targeted to children with parental income below $44,000 � corresponding to

the 47th percentile � is slightly above the margin of being self-�nancing.

6 Why Are Optimal Policies Progressive?

We have just shown in Section 5 that optimal �nancial aid is progressive, and more so than

the current US policies. We have also shown that the results are not primarily driven by the

desire to redistribute from richer to poorer students. In this section, we explore the key forces
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Figure 6: Fiscal Returns on Increase in Financial Aid

Notes: The dashed-dotted (blue) line shows the net �scal return for a $1 increase in �nancial aid

targeted to all students with a parental income level lower than X. It crosses the pro�tability line

at $44,000 � corresponding to the 47th percentile. The solid (red) line shows the net �scal return for

a $1 increase in �nancial aid targeted to all students with a parental income level equal to X. It

crosses the pro�tability line at $23,000 � corresponding to the 21st percentile.

determining the progressivity result. Recall that the change in welfare due to a small increase

of G(I) is given by (3)

∂E(I)

∂G(I)
×∆T E(I)︸ ︷︷ ︸

Enrollment E�ect

+
∂C(I)

∂G(I)

∣∣∣∣∣
E(I)

E(I)×∆T C(I)︸ ︷︷ ︸
Completion E�ect

− Ẽ(I)
(
1−WE(I)

)︸ ︷︷ ︸
Mechanical E�ect

.

We now illustrate the enrollment e�ect and the mechanical e�ect, evaluated at the current US

system, in order to explain why welfare is increasing as the schedule becomes more progressive.

In this section we ignore the completion e�ect for brevity, as we only found a quantitatively

very small contribution of it to �nancial aid policies.

Figure 7(a) plots the increase in enrollment for a $1,000 increase starting from the current

�nancial aid system against parental income.

The curve is hump-shaped; slightly increasing at the beginning and then strongly decreas-

ing. Middle-income children increase their enrollment rates most strongly. The decreasing

elasticity contributes to the progressivity results at least after parental income levels of $40,000.

In contrast, the �scal externality ∆T E(I) is increasing in parental income because marginal

enrollees from higher income households have higher returns.

We now turn to the mechanical e�ect. Figure 8 plots the share of inframarginal enrollees

and graduates, which are the key determinants of the mechanical e�ect. As discussed above,
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(a) Marginal Students (b) Fiscal Externality

Figure 7: Marginal Students and Tax Revenue Changes

Notes: In (a), we plot the change in enrollment rates for a simulated $1,000 change in �nancial aid

for each parental income level. The average (across all individuals in the sample) is 1.48 percentage

points. In (b), we show the implied average �scal externality across all students who are marginal

w.r.t. the �nancial aid increase.

there is a strong parental income gradient, as the share of graduates (enrollees) increases from

around 13% (19%) to around 51% (69%). Note that this basically implies that the marginal

direct �scal costs of a grant increase do increase by factor of 3-4 with parental income.

Both the increasing share of inframarginal students and the declining share of marginal stu-

dents are important drivers of the progressivity result. The increasing share of inframarginal

students is the more important driver: it varies by a factor of 3-4 whereas the share of marginal

enrollees only varies by factor of 1.5 as we move from the lowest to the highest parental in-

come. How robust are these results to changes in modeling assumptions? We �rst analyze the

robustness about the shape of marginal students in Section 6.1. Here our focus is on the role

of parental transfers, work during college and borrowing constraints. These elements should

all have an impact on how responsive people are to �nancial aid. We then elaborate on which

elements drive the increasing share of inframarginal students in Section 6.2. There, we provide

a model-based decomposition to understand the increasing share of inframarginal students.

We show that the correlation between parental income and ability and psychic costs are key

drivers.

6.1 Enrollment Elasticity: Understanding the Shape

In this section, we analyze how the elasticity of college enrollment behaves under a number of

alternative model speci�cations.46 First, in Figure 9(a) we recalculate the share of marginal

46We use the terms �a share of marginal students� and �elasticity of college enrollment� interchangeably in
this section.
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Figure 8: Inframarginal Students
Notes: We plot the shares of enrollees and graduates as a function of parental income.

students when education-related borrowing constraints have been removed.47 This leads to a

decrease in the share of marginal individuals across the income distribution, with the largest

decrease for low-income students. This is intuitive: without borrowing constraints, individuals

are less responsive to short-term �nancial incentives when choosing whether or not to enroll

in college, and moreover, borrowing constraints are more important for low-income students.

But even in a world with lax borrowing constraints, the shape of the marginal student function

favors progressivity.

In Figure 9(b), we shut down working in college. The share of marginal students increases.

This is intuitive, if college students cannot work during college, �nancial aid is more important

for them. The shape of the marginal enrollee curve, however, is largely una�ected, which is in

line with the fact that work during college is only weakly negatively correlated with parental

income.

Figure 9(c) shows the share of marginal enrollees when parental transfers are exogenous and

therefore are not crowded out by �nancial aid. As �nancial aid does not crowd out parental

transfers in this scenario, increases in �nancial aid lead to larger increases in enrollment. The

e�ect is increasing for most of the parental income distribution, re�ecting that crowd out

increases in parental income.

6.2 Relationship between Parental Income and College Enrollment

As we have seen, the positive relation between college graduation and parental income plays

a crucial role in determining the optimal �nancial aid schedule. In this section, we perform a

model-based decomposition exercise to better understand which factors drive this relationship

47Speci�cally, we allow individuals to borrow up to average tuition plus cost of room and board � $6,500 a
year as in Johnson (2013).
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(a) Relax Borrowing Constraints (b) No Work in College

(c) Exogenous Parental Transfers

Figure 9: Fraction of Marginal Students under Alternative Speci�cations

Notes: In each panel, we plot the change in enrollment rates for a simulated $1,000 change in �nancial

aid for each parental income level. In each panel, the solid (red) line represents the responses in the

baseline model, and the dashed (black) line the simulated responses in a counterfactual world where

we either relax borrowing constraints, take out "working in college" from the model, or assume

exogenous parental transfers for all children.

between college graduation rates and parental income.48 For this decomposition, all changes

to the model speci�cation are cumulative. That is, each new model speci�cation contains the

same model alterations as the previous speci�cation.

The simulated relationship between college graduation rates and parental income evaluated

at the optimal level of grants49 is shown in the solid line in Figure 10. In this baseline case,

college graduation rates are strongly increasing in parental income, even though the optimal

�nancial aid schedule is highly progressive: 42% of students in the top quartile of parental

income graduate from college compared to only 21% in the bottom quartile of parental income.

48Alternatively, we could have focused on enrollment instead of graduation. The implications are very
similar.

49Results are similar if the decomposition is performed for the current �nancial aid system.
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One factor that leads to this positive relationship is the correlation between parental income

and ability. Higher-ability students enjoy a larger college wage premium and have lower

psychic costs of attending college. To understand the contribution of this correlation toward

di�erential college-going rates by parental income, we simulate a version of the model in which

we remove the correlation between parental income and ability by drawing each agent's ability

from the unconditional ability distribution. We can see from Figure 10 that the correlation

between college graduation has reduced substantially, with 29% of children from the bottom

quartile of the income distribution graduating from college compared to 38% of children from

the top quartile of the income distribution.

Additionally, children with higher parental income tend to have lower psychic costs since

parental education and parental income are positively correlated. We remove the relation

between parental education and psychic costs in college by setting κParEd = 0, in addition

to removing the correlation between parental income and ability.50 After removing these dif-

ferences in psychic costs, the relationship between parental income and college graduation

has become slightly negative. The reason is that the progressive �nancial aid schedule now

induces more children from low-income families to attend college relative to high-income fam-

ilies. These �rst two exercises show that the di�erences in psychic costs and ability across

parental income groups play a large role in the parental income gradient in college graduation.

In our model, there are further factors which in�uence the parental income gradient in

college education. The individual returns to college are not known at the time of the enrollment

decision. As individuals are risk averse and as parents with higher income levels give higher

transfers for students attending college, this riskiness of college is another mechanism which

can generate a positive relationship between college and parental income. In addition to the

modi�cations above, we remove this risk in the monetary return to college by simulating a

version of the model in which each agent, with certainty, receives an ability draw of v̄es,θ,

where v̄es,θ is chosen to keep average conditional wage levels constant. Removing the riskiness

of college leads to a slight increase in college graduation rates of students with low-income

parents relative to those with high-income parents.

Next, we examine the role of borrowing constraints in generating this relationship by as-

suming that agents can borrow freely throughout their life cycle. This leads to a nearly 10

percentage point increase in the college graduation rate without a signi�cant change in the

correlation between parental income and college graduation. As the optimal grant schedule

is highly progressive, removing the borrowing constraint does not lead to signi�cant increases

50Furthermore, we set κ0 so that the average psychic cost of going to college is unchanged.
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in low-income college graduation rates relative to high-income students, even though students

with high parental income receive higher parental transfers.51

Finally, we remove the relationship between parental transfers and parental income by

simulating a version of the model in which all parents give transfers as if they earn the mean

level of parental income. This has little e�ect on college going rates once these other elements

that drive the parental income gradient have been shut down.

Figure 10: Model-Based Decomposition of Parental Income Gradient

Notes: We plot the share of college graduates given the optimal utilitarian �nancial aid for di�erent

model speci�cations. The solid red line represent the full model. For the dashed black line we

simulate a model version for which we remove the correlation between ability and parental income.

For the dashed-dotted blue line we simulate a model version for which we remove the correlation

between the costs psychic and parental education on top. For the dotted pink line we simulate a

model version for which on top removes any riskiness; i.e. education decisions are made under

perfect foresight. For the dashed green line with circles we simulate a model version for which on

top we remove all borrowing constraints. For the turquoise line with crosses we simulate a model

version for which we equalize transfers across parental income levels conditional on education.

6.2.1 Decomposition: Recalculation of Optimal Policies

This decomposition has illustrated the key factors in the positive relation between parental

income and college education. Removing the di�erent elements from the model also a�ects

the other forces that determine the optimal �nancial aid schedule. We therefore now simulate

the respective optimal �nancial aid schedule. Figure 11 shows the implied optimal policies for

each model speci�cation.

51We also have performed the same decomposition with the current �nancial aid schedule. In this case
removing borrowing constraints does signi�cantly decrease the correlation between parental income and college
graduation rates.
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Figure 11: Optimal Financial Aid for Di�erent Model Speci�cations

Notes: For each model speci�cation (see Figure 10), we illustrate the respective optimal �nancial

aid schedule.

First, the positive ability-income correlation does not drive the �nancial aid results (dashed

black line). Although graduation rates �atten (see the black dashed line in Figure 10), there is

an o�setting e�ect as low-income children now have higher ability and therefore larger returns,

which increases �scal externalities for low-income children. Policies are still progressive in this

model.

Removing the correlation with psychic costs and eliminating income risk makes them �

expectedly � less progressive, the e�ect is small, however. Next we eliminate borrowing con-

straints from the stripped-down model (with no interesting heterogeneity except for transfers;

we come back to the issue of borrowing constraints in Section 7.1, where we shut them down

without doing the previous steps.). This makes optimal policies less progressive but a signif-

icant gradient remains. Finally, the turquoise crossed line shows � �nally � an almost zero

slope, as transfers are equalized and we are in a world with no meaningful heterogeneity; thus,

there is no longer a welfare argument for having need-based �nancial aid.52

7 Extensions

In this section we provide various extensions and robustness checks. First, we stick to the

model in the main speci�cation and elaborate on how policy implications for progressivity

52The turquoise crossed line in Figure 11 shows some noise and is not perfectly �at because there are still
two (rather uninteresting) sources of heterogeneity left even in the last model: gender and region of origin.
These two variables have a zero correlation with parental income but lead to the small bumps. Gender still
enters psychic costs and region a�ects tuition. When we eliminate the two variables, we arrive at a �at
schedule.
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would change if the government could (i) remove borrowing constraints in Section 7.1, (ii)

optimally set the merit-based element in Section 7.2, and (iii) set the income tax schedule

optimally.

In Section 7.4, we calibrate a version of the model where parents may respond to changes in

the �nancial aid schedule by adjusting their investment in their child's development. In Section

7.5, we calculate optimal �nancial aid when wages are determined in general equilibrium.

Finally, in Section 7.6, we then discuss further issues such as income e�ects and parental

incentives for earnings.

7.1 The Role of Borrowing Constraints

We have shown that optimal progressivity is not primarily driven by redistributive tastes but

rather by e�ciency considerations in Section 5.2. Given that our analysis assumes that stu-

dents cannot borrow more than the Sta�ord Loan limit, the question arises whether these

e�ciency considerations are driven by borrowing limits that should be particularly binding

for low-parental-income children. To elaborate on this question, we ask how normative pre-

scriptions for �nancial aid policies change if students can suddenly borrow as much as they

want (up to the natural borrowing limit, which is not binding). For this thought experiment,

we �rst remove borrowing constraints and keep the current �nancial aid system. This will

increase college enrollment and imply a windfall �scal gain for the government. In a second

step, we choose optimal �nancial aid but restrict the government to not use this windfall gain.

As illustrated in Figure 12(a), optimal �nancial aid policies become a bit less progressive in

this case. This is expected. More low-income children are close to the borrowing constraint

in the baseline speci�cation. When we remove borrowing constraints, redistributing funds

towards these students becomes less attractive for the utilitarian social planner. Quantita-

tively, however, optimal policies are still very progressive even when borrowing constraints are

removed.

We also reestimated a version of the model in which borrowing constraints varied by parental

resources. We found that the optimal �nancial aid schedule was very similar to the baseline

schedule. Details can be found in Appendix B.9. We also considered alternative unreported

versions, where exogenous borrowing constraints depend di�erently on characteristics of the

child and the parent. The policy implications were not a�ected much.

7.2 Merit-Based Financial Aid

In the benchmark in Section 5, we have assumed that the merit-based element of �nancial

aid policies stays una�ected. We now allow the government to optimally choose the gradient

in merit and parental income. Figure 13(a) shows that the need-based element is basically
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(a) Financial Aid (b) Graduation Rates

Figure 12: Financial Aid and Graduation with Free Borrowing
Notes: The dashed-dotted (blue) line shows the optimal schedule when borrowing constraints have

been removed. Optimal �nancial aid with borrowing constraints at their baseline levels and current

�nancial aid are also shown for comparison in Panel (a). In Panel (b) we display the college graduation

share by parental income group for each of the three scenarios.

unchanged. Figure 13(b) shows how optimal �nancial aid is increasing in AFQT score. In-

terestingly, the relation is only slightly upward sloping and very similar for di�erent levels of

parental income. The intuition for the rather �at relationship is simple: whereas higher ability

levels have higher returns to college and therefore higher �scal externality levels, they are also

more likely to be inframarginal. These two forces roughly balance such that the optimal aid

is almost �at in ability.

(a) Financial Aid (b) Illustration of Optimal Merit Based Element

Figure 13: Optimal Need and Merit Based Financial Aid.
Notes: The dashed-dotted (blue) line shows the optimal schedule for the median ability level when

we chose the merit-based element of �nancial aid optimally. Optimal �nancial aid with the merit-

based component �xed at the baseline levels and current �nancial aid are also shown for comparison

in Panel (a). In Panel (b) we display the optimal �nancial aid as a function of ability for various

parental income levels.
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7.3 Jointly Optimal Financial Aid and Income Taxation

The size of the �scal externality of college education depends on the tax-transfer system

in place. Our structural estimates took the current US tax-transfer system as given. An

interesting question to ask is how optimal subsidies change when the tax-transfer system is

chosen optimally. To address this, we enrich the optimal policy space such that the planner

can also pick a nonlinear tax function T (y), as is standard in the public �nance literature

(Piketty and Saez, 2013).53

First, the optimal formulas for the subsidy schedule are unchanged and still given by the

formulas in Section 2. In Appendix A.7, we show what the endogenous extensive education

margin implies for optimal marginal tax rate formulas.54 For the sake of brevity, we discuss

the theory only in the appendix and now move on to the quantitative implications of optimal

taxes. We assume that agents are subject to borrowing constraints and the government only

(besides the tax schedule) maximizes the need-based element of the �nancial aid schedule.

Results are barely changed if borrowing constraints are relaxed, the merit-based element is

chosen optimally as well, or both.

Figure 14(a) displays average tax rates in the optimal as well as the current U.S. system.

Average tax rates are higher for most of the income distribution. Figure 14(b) illustrates op-

timal �nancial aid in the presence of the optimal tax schedule. First, notice that �nancial aid

is signi�cantly higher on average compared to the case with the current U.S. tax code. Higher

income tax rates increase the �scal externality, which increases the optimal level of �nan-

cial aid. Second, the progressivity of optimal �nancial aid policies is preserved. Progressive

taxation does not change the desirability of progressive �nancial aid policies. An unreported

decomposition exercise shows that this is again driven by the increasing share of inframarginal

students along the parental income distribution.

7.4 Endogenous Ability

Up to this point, we have assumed that a child's ability at the beginning of the model, θ, is

exogenous. One might be concerned that parents may respond to changes in the �nancial aid

schedule by adjusting their investment in their child's development, therefore changing their

child's ability at the time of college entrance. To better understand how the optimal �nancial

aid schedule would di�er if ability were endogenous with respect to �nancial aid, we posit a

53We abstract from education dependent taxation; for such cases please see Findeisen and Sachs (2016) and
Stantcheva (2017).

54The formula is therefore related to the formulas of Saez (2002) and Jacquet et al. (2013), where the
extensive margin is due to labor market participation, or Lehmann et al. (2014) where the extensive margin
captures migration.
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(a) Average Tax Rates (b) Financial Aid Schedule

Figure 14: Optimal versus Current: Average Tax Rates and Financial Aid Schedule
Notes: In Panel (a), the solid (red) line shows the optimal average tax rates when income tax and

�nancial aid are both chosen optimally. The dashed (black) line shows the current schedule. In

Panel (b) we display the optimal �nancial aid schedule when taxes are chosen optimally, the optimal

�nancial aid when the tax function is held at its current schedule, and the current �nancial aid

schedule.

model extension in which a child's ability is determined endogenously as a function of parental

investment.

Children are endowed with an initial ability at birth θ0. A child's ability at the time

of college, θ, is produced as a function of the child's initial ability and parental monetary

investment, Invest. Speci�cally, we assume the following functional form, which is very

similar to and based on the translog functional form employed in Agostinelli and Wiswall

(2016)55

θ = lnA+ γ1 ln θ0 + γ2 ln Invest+ γ3 ln θ0 ln Invest+ ι,

where ι is a normally distributed error that is unknown by the parent at the time of choosing

Invest. We calibrate the parameters of the childhood ability production function to match the

joint distribution of parental income and ability we observe in our data and selected moments

from Agostinelli and Wiswall (2016). Details on the calibration are included in Appendix B.8.

Dahl and Lochner (2012) use changes in the EITC to instrument for family income and

�nd that a $1000 increase in family income leads to an increase in ability scores by 6% of a

standard deviation. We simulate an increase in yearly family income of parents by $1,000 in

our model. The increase in income leads to an average increase in AFQT scores of 2.3% of

a standard deviation across all children, and an increase of 5.4% of a standard deviation for

55Agostinelli and Wiswall (2016) estimate a model of early childhood developments with multiple periods
in which childhood skills are latent. Additionally, they use a broader concept of parental investment; the
investment we refer to here is strictly monetary.
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children in the lowest quintile. Therefore, the simulated responsiveness of ability with respect

to parental income is slightly smaller than but in line with Dahl and Lochner (2012).

The optimal �nancial aid schedule, graduation rates, and ability levels with endogenous

ability are shown in Figure 15. Panel 15(a) shows the new optimal �nancial aid schedule

when ability is endogenous. Compared to the baseline case when ability is exogenous, the

optimal aid schedule is now much higher, re�ecting that increases in �nancial aid are now

much more pro�table for the government. With endogenous ability, increases in �nancial aid

lead to increases in child ability, which increase tax payments of both marginal and infra-

marginal children. The optimal aid schedule is still highly progressive. Panel 15(b) shows the

graduation rates evaluated at the optimal aid schedule with endogenous ability. Switching to

the optimal schedule leads to an increase in college graduation rates of over 10%, re�ecting

that 1) the optimal schedule is considerably more generous than the current schedule and 2)

increases in �nancial aid lead to larger increases in college-going when ability is endogenous.

Panel 15(c) shows the change in the relationship between parental income and ability as a re-

sult of switching from the current �nancial aid system to the optimal system with endogenous

ability. Ability is measured in percentiles of AFQT scores where percentiles are evaluated at

their current levels. We can see that switching to the optimal aid schedule leads to substan-

tial increases in child ability, especially for children in the lower end of the parental income

distribution.

One issue with the preceding analysis is that we have assumed that parents do not face

borrowing constraints. Poor parents may be borrowing constrained while their children are

young and therefore may not be able to increase investment in their children in response to

changes in �nancial aid. To explore how borrowing constraints would a�ect the optimal policy,

we assume that P% of parents without a college education cannot increase their investment in

their children while the remainder of parents may choose their investment level without this

constraint.56 The optimal policy for a range of values of P is displayed in Figure 16. We can

see that the optimal progressivity of the system decreases as we increase the percentage of

low-education families who are borrowing constrained. However, the optimal schedule remains

more progressive than the current schedule in all cases.

7.5 General Equilibrium E�ects on Wages

Our analysis abstracted from general equilibrium e�ects on relative wages. Accounting for

these e�ects would imply that the e�ects of �nancial aid on enrollment might be mitigated in

56Caucutt and Lochner (2017) �nd that 20% of parents with a high school degree and young children are
borrowing constrained. Of course, borrowing constraints will also a�ect the investment decisions of parents
who are not at the borrowing limit.
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(a) Financial Aid (b) Graduation Rates

(c) Ability Levels

Figure 15: Financial Aid, Graduation, and Ability Levels with Endogenous Ability
Notes: The dashed-dotted (blue) line shows the optimal schedule when child's ability is endogenous.

Optimal �nancial aid with exogenous ability and current �nancial aid are also shown for comparison

in Panel (a). In Panel (b) we display the college graduation share by parental income group when

ability is endogenous with the optimal aid schedule and with the current aid schedule. Panel (c)

shows the relationship between parental income and ability in the optimal system with endogenous

ability and under the current �nancial aid system. Ability is measured in percentiles of the AFQT

distribution before �nancial aid is re-optimized.

the long run: if more individuals go to college, the college wage premium should be expected

to decrease because of an increase in the supply of college educated labor (Katz and Murphy,

1992). This in turn would mitigate the initial enrollment increase. To investigate the role

of general equilibrium e�ects on our results, we recalculate the optimal �nancial aid schedule

under the assumption that wages are determined in equilibrium. We assume �rms use a

CES production function that combines total e�ciency units of labor supplied by skilled and

unskilled workers, implying that wages are determined by the ratio of skilled to unskilled

labor. We assume an elasticity of substitution between skilled and unskilled workers of 2.

Details on the approach can be found in Appendix B.10.

The optimal �nancial aid schedule and graduation rates with general equilibrium wages are

shown in Figures 17(a) and 17(b). We can see that the overall amount of aid has decreased
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(a) Financial Aid (b) Graduation Rates

(c) Ability Levels

Figure 16: Financial Aid, Graduation and Ability Levels with Endogenous Ability and
Parental Borrowing Constraints
Notes: In Panel (a), each line shows the optimal �nancial aid with endogenous ability when P percent

of low-education parents are borrowing constrained and therefore cannot adjust their child's ability in

response to changes in �nancial aid. In Panel (b) we display the college graduation share for each of

these scenarios. Panel (c) shows the relationship between parental income and ability in each scenario.

Ability is measured in percentiles of the AFQT distribution before �nancial aid is re-optimized.

slightly as the �scal externality of college has been scaled down by general equilibrium wage ef-

fects. However, the optimal aid schedule with endogenous wages is just as progressive as in the

case with exogenous wages. Thus, while general equilibrium wages dampen the e�ectiveness

of �nancial aid overall, they do not lead to dramatic changes in the relative bene�t of �nan-

cial aid increases for students of di�erent parental income levels. Hence, whereas the overall

(average) generosity of the optimal �nancial aid schedule is slightly lower, the implications for

how �nancial aid should vary with parental income are unchanged.57

57Our results are, hence, consistent with the important earlier paper(s) by Heckman et al. (1998). They
�nd that GE e�ects dampen the e�ectiveness of tuition subsidies, and in our case the average level of �nancial
aid is also a�ected.
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(a) Financial Aid (b) Graduation Rates

Figure 17: Financial Aid and Graduation with General Equilibrium Wages
Notes: The dashed-dotted (blue) line shows the optimal schedule when wages are determined in

equilibrium. Production is CES between skilled and unskilled workers with an elasticity of substitution

of 2. Optimal �nancial aid with exogenous wage rates and current �nancial aid are also shown for

comparison in Panel (a). In Panel (b) we display the college graduation share by parental income

group for each of the three scenarios.

7.6 Further Aspects

Income E�ects We assumed away income e�ects on labor supply for simplicity. How would

our analysis change if income e�ects were taken into account? If an increase in �nancial aid

decreases borrowing (which should happen unless individuals are borrowing constrained), it

lowers the stock of student debt when individuals enter the labor market. If leisure is a normal

good, this implies lower earnings of college graduates. This then triggers a reduction in tax

revenue and makes the increase in �nancial aid less desirable ceteris paribus.

A reasonable upper bound is to assume that a $1 increase in �nancial aid leads to a $1

decrease in borrowing for inframarginal students. This approximately decreases the stock of

student debt by $1. How can we expect this to a�ect lifetime earnings? Imbens et al. (2001)

use a survey of lottery players to estimate income e�ects and �nd that a $1 increase in wealth

triggers a decrease in earnings of about $0.11. For a marginal tax rate of 30%, this would imply

a loss in tax revenue of about $0.03. Thus, the marginal �scal costs of increasing �nancial aid

would be increased by 3% according to this simple back-of-the-envelope calculation. Whereas

this generally is an e�ect that policy makers should bear in mind, we conjecture that it does not

weaken our result about the optimal progressivity of �nancial aid. To weaken our progressivity

result, the e�ect would have to be larger for lower parental income levels. However, since low-

parental-income students are actually more likely to be borrowing constrained, the income

e�ects should be smaller for them and we conjecture that the opposite is true and income

e�ects would instead reinforce our results.
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Parental Earnings Incentives An increase in the progressivity of �nancial aid can, of

course, have adverse e�ects on parental incentives. Need-based �nancial aid implies an increase

in e�ective marginal tax rates and can lower parental labor supply (or reported income more

generally) which lowers tax revenue and increases �nancial aid payments. In an earlier version

of this paper (Findeisen and Sachs, 2015), we elaborated this potential additional �scal e�ect

when considering the �scal e�ects of �nancial aid reforms. The quantitative extent of these

e�ects turned out to be rather modest.

Welfare Weights We have shown that the progressivity result is not driven by the Util-

itarian objective in Section 5.2 where we considered a tax revenue maximizing planner that

puts zero welfare weights on all students. But what if society puts higher welfare weights on

children with higher parental income? Zoutman et al. (2016) ask the question for which social

welfare weights the Dutch tax schedule is optimal and �nd that these welfare weights are

increasing in income for low incomes. Applying our analysis to the Dutch �nancial aid system

should take that into account and this would be a force against progressivity. Following a

very similar approach for the US, Lockwood and Weinzierl (2016) have shown that welfare

weights are declining in income. We therefore refrain from considering such an alternative

welfare function for the US.

8 Conclusion

This paper has analyzed the normative question of how to optimally design �nancial aid

policies for students. We �nd the very robust result that optimal �nancial aid policies are

strongly progressive. This result holds for di�erent social welfare functions, assumptions

on credit markets for students, and assumptions on income taxation. Moreover, we �nd

that a progressive expansion in �nancial aid policies could be self-�nancing through higher

tax revenue, thus bene�ting all taxpayers as well as low-income students directly. Financial

aid policies are a rare case with no classic equity-e�ciency trade-o� because a cost-e�ective

targeting of �nancial aid goes hand in hand with goals of social mobility and redistribution.

We do think that our results can be used for policy recommendations according to the criteria

of Diamond and Saez (2011):58 the economic mechanism is empirically relevant and of �rst

order importance to the problem. The result is very robust. Finally, progressive �nancial aid

systems are clearly implementable, as they are already in use in all OECD countries.

58Diamond and Saez (2011) write in their abstract: "We argue that a result from basic research is relevant
for policy only if (a) it is based on economic mechanisms that are empirically relevant and �rst order to the
problem, (b) it is reasonably robust to changes in the modeling assumptions, (c) the policy prescription is
implementable (i.e., is socially acceptable and is not too complex)."
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A Theoretical Appendix

A.1 Derivation of Equation 3

The Lagrangian for the government's problem reads as:

L =

∫
R+

∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI

+ ρ

{∫
R+

∫
χ

NT HNPV (X, I)1V Ej <V Hj k(X, I)dXdI

+

∫
R+

∫
χ

NT GNPV (X, I)1V Ej ≥V Hj P (X, I,G(I))k(X, I)dXdI

+

∫
R+

∫
χ

NT DNPV (X, I)1V Ej ≥V Hj (1− P (X, I,G(I))) k(X, I)dXdI − F̄

}
.

The derivative w.r.t. G(I) is given by:

∂L
∂G(I)

=

∫
χ

1V Ej ≥V Hj
∂V E(X, I)

∂G(I)
h̃(X|I)dX (16)

+ ρ

∫
χ

{
P (X, I,G(I))

∂NT GNPV (X, I)

∂G(I)
+ (1− P (X, I,G(I)))

∂NT DNPV (X, I)

∂G(I)

}
h(X|I)dX

+ ρ

∫
χ

1Hj→Ej

{
P (X, I,G(I))NT GNPV (X, I) + (1− P (X, I,G(I)))NT DNPV (X, I)

−NT HNPV (X, I)
}
h(X|I)dX

+ ρ

∫
χ

∂P (X, I,G(I))

∂G(I)

(
NT GNPV (X, I)−NT DNPV (X, I)

)
h(X|I)dX

Recall that 1Hj→Ej takes the value one if an individual of type j is pushed over the college

enrollment margin due to a small increase in �nancial aid.

The �rst term captures the direct utility increase of inframarginal enrollees due to receiving

more �nancial aid. The second term captures the direct �scal e�ect of paying more �nancial aid

to inframarginal students. The third term captures the �scal e�ect of additional enrollees. The

fourth e�ect captures the �scal e�ect due to the increase in the completion rate of inframarginal

students. The implied change in the enrollment and dropout rate has no direct �rst-order e�ect

on welfare: individuals that are marginal in their decision to enroll or not and to continue

studying or drop out, were just indi�erent between the two respective options, hence this

change in behavior has no e�ect on their utility.

The de�nitions of E(I) and ∆TE(I) directly imply that the third term equals the enrollment

e�ect in (3) multiplied by ρ. The de�nitions of ∆T C(I), E(I) and C(I) directly imply that

the fourth term equals the completion e�ect in (3) multiplied by ρ.
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Now it remains to be shown that the �rst and second term are equal to the mechanical

e�ect in (3). The application of the envelope theorem implies that the �rst term reads as

∫
χ

1V Ej ≥V Hj

4∑
t=1

βt−1

t∏
s=1

Pt(X, I,G(I))UE
c (ct, l

E
t ;X, I)

(
1 +

∂tr(X, I,G(I))

∂G(I)

)
h̃(X|I)dX. (17)

The last term, using the de�nitions of NT GNPV (X, I) and NT DNPV (X, I), can be written as

−ρ
∫
χ

4∑
t=1

1

1 + r

t∏
s=1

Pt(X, I,G(I))h(X|I)dX. (18)

Adding (17) and (18), using the de�nition of the social marginal welfare weight yields equation

3.

A.2 More General Version of Equation 3 with Annual Dropout De-

cisions

We now show the generalization in which individuals can drop out each period. For this case,

we have to distinguish between individuals that drop out in di�erent periods. Hence, for the

education decision we have: e ∈ {H,G,D1, D2, D3, D4}, where Dt implies that individuals

drop out at the beginning of year t. Accordingly we can de�ne the net �scal contribution of

an individual of type (X, I) that drops out in period t by NT DtNPV (X, I):

NT DtNPV (X, I) =
T∑
s=t

(
1

1 + r

)s−1

E (T (ys)|X, I,Dt)− G(I)
t−1∑
s=1

(
1

1 + r

)s−1

.

We also have to de�ne the net �scal contribution of an individual that is enrolled in year 4

NT E4
NPV (X, I) = P4(X, I,G(I))NT GNPV (X, I) + (1− P4(X, I,G(I)))NT D4

NPV (X, I)

and for t = 2, 3:

NT EtNPV (X, I) = Pt(X, I,G(I))NT Et+1
NPV (X, I) + (1− Pt(X, I,G(I)))NT DtNPV (X, I).
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The Lagrangian for the government's problem reads as:

L =

∫
R+

∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI

+ ρ

{∫
R+

∫
χ

NT HNPV (X, I)1V Ej <V Hj k(X, I)dXdI

+

∫
R+

∫
χ

NT GNPV (X, I)1V Ej ≥V Hj

4∏
t=1

Pt(X, I,G(I))k(X, I)dXdI

+

∫
R+

∫
χ

NT D1
NPV (X, I)1V Ej ≥V Hj (1− P1(X, I,G(I))) k(X, I)dXdI

+

∫
R+

∫
χ

NT D2
NPV (X, I)1V Ej ≥V Hj P1(X, I,G(I)) (1− P2(X, I,G(I))) k(X, I)dXdI

+

∫
R+

∫
χ

NT D3
NPV (X, I)1V Ej ≥V Hj

2∏
t=1

Pt(X, I,G(I)) (1− P3(X, I,G(I))) k(X, I)dXdI

+

∫
R+

∫
χ

NT D4
NPV (X, I)1V Ej ≥V Hj

3∏
t=1

Pt(X, I,G(I)) (1− P4(X, I,G(I))) k(X, I)dXdI − F̄

}
.

The FOC for G(I) shares the same basic structure as (16). However, here the �scal e�ects

due to change in dropout behavior are more involved:59

ρ

∫
χ

3∏
t=1

Pt(X, I,G(I))
∂P4(X, I,G(I))

∂G(I)

(
NT GNPV (X, I)−NT D4

NPV (X, I)
)
h(X|I)dX

+ρ

∫
χ

2∏
t=1

Pt(X, I,G(I))
∂P3(X, I,G(I))

∂G(I)

(
NT E4

NPV (X, I)−NT D3
NPV (X, I)

)
h(X|I)dX

+ρ

∫
χ

P1(X, I,G(I))
∂P2(X, I,G(I))

∂G(I)

(
NT E3

NPV (X, I)−NT D2
NPV (X, I)

)
h(X|I)dX

+ρ

∫
χ

∂P1(X, I,G(I))

∂G(I)

(
NT E2

NPV (X, I)−NT D1
NPV (X, I)

)
h(X|I)dX,

In short term notation, similar to that in (3), we can write

4∑
t=1

∂Cont(I)

∂G(I)

∣∣∣∣∣
Et(I)

∆T Con,t(I)Et(I)

where Cont(I) is the share of those enrollees with parental income I in period t, that continue

studying to year t+ 1. It is de�ned by

Cont(I) =
Et+1(I)

Et(I)

59Again, changes in dropout behaviour have no direct welfare e�ect due to the envelope theorem.
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for t = 1, 2, 3 and

Con4(I) =

∫
χ
1V Ej ≥V Hj

∏4
s=1 Ps(X, I,G(I))h(X|I)dX

E4(I)
.

where

E1(I) = E(I) =

∫
χ

1V Ej ≥V Hj h(X|I)dX.

and

Et(I) =

∫
χ

1V Ej ≥V Hj

t−1∏
s=1

Ps(X, I,G(I))h(X|I)dX.

Finally, the changes in tax revenue are de�ned by:

∆T Con,t(I) =

∫
χ

∆T Con,t(X, I)∂P (X,I,G(I))
∂G(I)

h(X|I)dX∫
χ
∂P (X,I,G(I))

∂G(I)
h(X|I)dX

where

∆T Con,t(X, I) = NT GNPV (X, I)−NT DNPV (X, I).

Hence, the equivalent to equation 3 is given by:

∂E(I)

∂G(I)
×∆T E(I) +

4∑
t=1

Et(I)
∂Cont(I)

∂G(I)

∣∣∣∣∣
Et(I)

∆T Con,t(I)− Ẽ(I)
(
1−WE(I)

)
.

A.3 Merit-Based Policies

Our approach is more general and can be extended to condition �nancial aid policies on other

observables like academic merit or jointly on the combination of parental income and academic

merit. In fact, in our empirical application we will allow the government to also target �nancial

aid policies on a signal of academic ability. Suppose the government can observe such a signal

of academic ability like the SAT score. We take that factor out of the vector X and label it

θ. For notational simplicity, we will still denote the vector without θ by X; in this case X

includes all factors in�uencing the college decision except for parental income and the measure

of academic ability. Suppose we are interested in deriving the optimal policy schedule which

conditions on need- and merit-based components jointly. Formally, the government maximizes

over G(I, θ). The derivation of the optimal �nancial aid policy schedule is analogous to the

derivation of G(I) and yields:

G(I, θ) =
ηE(I, θ)∆TE(I, θ) + ηC(I, θ)∆TC(I, θ)E(I, θ)

E(I, θ) (C(I, θ)− (1− C(I, θ))td) (1−WE(I, θ))
(19)
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where all terms are evaluated at a parental income-ability pair (I, θ).

How should we expect optimal �nancial aid to vary with academic ability, holding parental

income �xed? At �rst glance, one may expect that the optimal grant G(I, θ) is increasing in

θ as the returns to college education should increase in θ, which boosts the �scal externality.

By conditioning on ability directly, the government can implicitly guarantee that marginal

students have a certain minimum expected return to college attendance, circumventing some

of the potential problems of a pure need-based system. Working against this, is that among

higher ability students there are (likely) more inframarginal students: i.e. they opt for college

in any �nancial aid system. Our empirical model in Section X will shed light on this �rst

question, which has no clear theoretical answer.

A.4 Proof of Proposition 2

The �rst-order condition for G(I) is given by

k(θ̃(I)|I)
∣∣∣ ∂θ̃(I)

∂G(I)

∣∣∣ (τyhθ̃(I)− G(I)
)
−
(

1−K(θ̃(I)|I)
)

= 0

Hence

G(I) =

(
1−K(θ̃(I)|I)

)
k(θ̃(I)|I) ∂θ̃(I)

∂G(I)

+ τyhθ̃(I).

Now use
∂θ̃(I)

∂G(I)
= − 1

yH(1− τ)

Hence

G(I) = τyhθ̃(I)− yH(1− τ)

(
1−K(θ̃(I)|I)

)
k(θ̃(I)|I)

Now substitute for the threshold:

G(I) = τyh

(
F − tr(I)− G(I)

(1− τ)yH

)
− yH(1− τ)

(
1−K(θ̃(I)|I)

)
k(θ̃(I)|I)

hence

G(I) =

τ
1−τ (F − tr(I))− yH(1− τ)

(1−K(θ̃(I)|I))
k(θ̃(I)|I)

1 + τ
1−τ

,

which yields the result.
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A.5 Proof of Corollary 3

Di�erentiating (9) w.r.t. I yields:

G ′(I) = −τtr′(I) + (1− τ)
∂
(

1−K(θ̃(I))

k(θ̃(I))

)
∂θ̃(I)

(tr′(I) + G ′(I))

where we used θ̃(I) = F−tr(I)−G(I)
(1−τ)yH

. and therefore θ̃′(I) = −tr′(I)−G′(I)
(1−τ)yH

. Solving for G ′(I) we get

G ′(I) =
−τtr′(I) + (1− τ)

∂
(

1−K(θ̃(I))

k(θ̃(I))

)
∂θ̃(I)

(tr′(I))

1− (1− τ)
∂
(

1−K(θ̃(I))

k(θ̃(I))

)
∂θ̃(I)

which proves Corollary 3 since by assumption tr′(I) > 0 and log concavity of the skill distri-

bution implies
∂
(

1−K(θ̃(I))

k(θ̃(I))

)
∂θ̃(I)

< 0.

A.6 Proof of Corollary 4

Di�erentiating (9) w.r.t. I yields:

G ′(I) = −τtr′(I) + (1− τ)
∂
(

1−K(θ̃(I)|I)
k(θ̃(I)|I)

)
∂θ̃(I)

(tr′(I) + G ′(I))− yH (1− τ)2
∂
(

1−K(θ|I)
k(θ|I)

)
∂I

∣∣∣∣∣
θ=θ̃(I)

Hence we obtain

G ′(I) =

−τtr′(I) + (1− τ)
∂
(

1−K(θ̃(I))

k(θ̃(I))

)
∂θ̃(I)

(tr′(I))− yH (1− τ)2 ∂( 1−K(θ|I)
k(θ|I) )
∂I

∣∣∣∣∣
θ=θ̃(I)

1− (1− τ)
∂
(

1−K(θ̃(I))

k(θ̃(I))

)
∂θ̃(I)

which proves Corollary 4 since by assumption tr′(I) > 0, log concavity of the skill distribution

implies
∂
(

1−K(θ̃(I))

k(θ̃(I))

)
∂θ̃(I)

< 0 and we assumed

∂
(

1−K(θ|I)
k(θ|I)

)
∂I

> 0 ∀ θ, I.

A.7 Optimal Income Taxation

The planner's problem is the same as in (1) with the di�erence that the planner also optimally

chooses the income tax schedule T (·). Notice that the formula for optimal �nancial aid policies

is unaltered. We allow the tax function T (·) to be arbitrarily nonlinear in the spirit of Mirrlees
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(1971). We restrict the tax function to be only a function of income and to be independent

of the education decision. This tax problem can either be tackled with a variational or tax

perturbation approach (Saez, 2001; Golosov et al., 2014; Jacquet and Lehmann, 2016) or with

a restricted mechanism design approach for nonlinear history-independent income taxes that

we explore in Findeisen and Sachs (2017).

We here provide a heuristic version of the former approach within our model. For notational

convenience, we consider the model of Section 2 with the assumption that individuals can only

dropout at the beginning of period 3.

Consider an increase of the marginal tax by an in�nitesimal amount dT ′ in an income

interval of in�nitesimal length [y∗, y∗ + dy]. As a consequence of this reform, all individuals

with y > y∗ face an increase of the absolute tax level of dT ′dy. The tax reform therefore

induces a mechanical increase in welfare of

∆WMR(y∗) = ρdT ′dy
T∑
t=1

(
1

1 + r

)t−1 ∫ ∞
y∗

ht,H(y)dy × sH

+ ρdT ′dy
T∑
t=3

(
1

1 + r

)t−1 ∫ ∞
y∗

ht,D(y)dy × sD

+ ρdT ′dy
T∑
t=5

(
1

1 + r

)t−1 ∫ ∞
y∗

ht,G(y)dy × sG

through the tax revenue increase (in net present value). ht,e(y) is the density of income of

individuals with education level e in period t and se is the overall share of individuals with

education level e. Both, the income densities and the education shares are endogeneous w.r.t.

to taxes, we get to this below.

Note that this increase in tax payment also has mechanical e�ects on individual utilities

which adds up to the following welfare e�ect

∆WMU(y∗) = dT ′dy
T∑
t=1

(
1

1 + r

)t−1 ∫ ∞
y∗

E (Uc|yt = y)ht,H(y)dy × sH

+ dT ′dy
T∑
t=3

(
1

1 + r

)t−1 ∫ ∞
y∗

E (Uc|yt = y)ht,D(y)dy × sD

+ dT ′dy
T∑
t=5

(
1

1 + r

)t−1 ∫ ∞
y∗

E (Uc|yt = y)ht,G(y)dy × sG.

Now we turn to the endogeneity of education shares. First of all some individuals will change

their initial enrollment decision. We de�ne 1y
∗

Hj→Ej to take the value one if an individual of

type j is marginal in the enrollment decision w.r.t. to a one dollar tax increase for earnings
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above y∗. Then, the welfare e�ect of individuals changing their enrollment decision due to a

small increase in T ′(y∗) is given by:

∆WE(y∗) = ρdT ′dy
∫
R+

∫
χ

1
y∗

Hj→Ej

{
NT ENPV (X, I)−NT HNPV (X, I)

}
h(X|I)dXdI.

Similarly, the probability to continue college and not drop out is endogenous w.r.t. taxes, i.e.

we have P (X, I,G(I), T (·)). The change in welfare due to the change in dropout behavior,

with some abuse of notation, is simply given by:

∆WD(y∗) = ρ

∫
R+

∫
χ

∫ ∞
y∗

∂P (X, I,G(I), T (·))
∂T (y)

dy
{
NT GNPV (X, I)−NT DNPV (X, I)

}
h(X|I)dXdI.

Finally, an increase in the marginal tax rate also a�ects labor supply behavior for individuals

within the interval [y∗, y∗+dy]. Individuals within this in�nitesimal interval change their labor

supply by

∂y∗t
∂T ′

dT ′ = −εy∗t ,1−T ′
y∗t

1− T ′
dT ′.

Whereas this change in labor supply has no �rst-order e�ect on welfare via individual utilities

by the envelope theorem, it has an e�ect on tax revenue, which is given by:

∆WL(y∗) =
T ′(y∗)

1− T ′(y∗)
y∗εy,1−T ′ × dT ′×(

sH

T∑
t=1

(
1

1 + r

)t−1

ht,H(y∗) + sD

T∑
t=3

(
1

1 + r

)t−1

ht,D(y∗) + sG

T∑
t=5

(
1

1 + r

)t−1

ht,G(y∗)

)
.

Since this reform must not have any non-zero e�ect on welfare if the tax system is optimal,

we have to have

∆WMR(y∗) + ∆WMU(y∗) + ∆WE(y∗) + ∆WD(y∗) + ∆WL(y∗) = 0 (20)

which provides an implicit characterization of T ′(y∗).
Finally, the optimal level for the lump-sum element of the tax schedule T (0) is implicitly

characterized by

∆WMR(0) + ∆WMU(0) + ∆WE(0) + ∆WD(0) = 0.
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This optimal tax approach is related to the formulas of Saez (2002) and Jacquet et al.

(2013), where the extensive margin is due to labor market participation, or Lehmann et al.

(2014) where the extensive margin captures migration.60

To implement this formula numerically, we follow a guess and verify approach. Hence, we

start with a guess for the tax schedule and then evaluate (20).61 We then slightly adjust

T ′(y∗) to make (20) closer to zero (but keep ∆WMR(y∗) + ∆WMU(y∗) + ∆WE(y∗) + ∆WD(y∗)

�xed, i.e. we only adjust ∆WL(y∗)). We then calculated the new allocation for this adjusted

schedule and evaluate (20) for income levels again and so on. We proceed until convergence.62

B Estimation and Calibration

B.1 Current Tax Policies

We set the lump sum element of the tax code T (0) to minus $1,800 a year. For average

incomes this �ts the deduction in the US-tax code quite well.63 For low incomes this re�ects

that individuals might receive transfers such as food stamps.64

B.2 Tuition Fees and Public Costs of Colleges

First, we categorize the following 4 regions:

• Northeast: CT, ME, MA, NH, NJ, NY, PA, RI, VT

• North Central: IL, IN, IA, KS, MI, MN, MO, NE, OH, ND, SD, WI

• South: AL, AR, DE, DC, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN , TX, VA, WV

• West: AK, AZ, CA, CO, HI, ID, MT, NV, NM, OR, UT, WA, WY

We base the following calculations on numbers presented by Snyder and Ho�man (2001). Table

313 of this report contains average tuition fees for four-year public and private universities.

60Further papers are Scheuer (2014) where the extensive margin captures the decision to become an en-
trepreneur and Kleven et al. (2009) who consider the extensive margin of secondary earner to study the optimal
taxation of couples.

61In fact a more complicated version of (20) which accounts for dropout behavior in every period and also
accounts for stochastic graduation.

62In each iteration, we also optimally choose the �nancial aid schedule G(I) given the tax schedule in the
respective iteration.

63Guner et al. (2014) report a standard deduction of $7,350 for couples that �le jointly. For an average tax
rate of 25% this deduction could be interpreted as a lump sum transfer of slightly more than $1,800.

64The average amount of food stamps per eligible person was $72 per month in the
year 2000. Assuming a two person household gives roughly $1,800 per year. Source:
http://www.fns.usda.gov/sites/default/�les/pd/SNAPsummary.pdf

61



According to Table 173, 65% of all four-year college students went to public institutions,

whereas 35% went to private institutions. For each state we can therefore calculate the

average (weighted by the enrollment shares) tuition fee for a four-year college. We then use

these numbers to calculate the average for each of the four regions, where we weigh the di�erent

states by their population size. We then arrive at numbers for yearly tuition & fees of $9,435

(North East), $7,646 (North Central), $6,414 (South) and $7,073 (West). For all individuals

in the data with missing information about their state of residence, we chose a country wide

population size weighted average of $7,434.

Tuition revenue of colleges typically only covers a certain share of their expenditure. Figures

18 and 19 in Snyder and Ho�man (2001) illustrate by which sources public and private colleges

�nance cover their costs. Unfortunately no distinction between two and four-year colleges is

available. From Figures 18 and 19 we then infer how many dollars of public appropriations

are spent for each dollar of tuition. Many of these public appropriations are also used to

�nance graduate students. It is unlikely that the marginal public appropriation for a bachelor

student therefore equals the average public appropriation at a college given that costs for

graduate students are higher. To solve this issue, we focus on institutions �that primarily

focus on undergraduate education� as de�ned in Table 345. Lastly, to avoid double counting

of grants and fee waivers, we exclude them from the calculation as we directly use the detailed

individual data about �nancial aid receipt from the NLSY (see Section B.3). Based on these

calculations we arrive at marginal public appropriations of $5,485 (Northeast), $4,514 (North

Central), $3,558 (South), $3,604 (West) and $4,157 (No information about region).

B.3 Estimation of Grant Receipt

Grants and tuition subsidies are provided by a variety of di�erent institutions. Pell grants,

for example, are provided by the federal government. In addition, there exist various state

and university programs. To make progress, similar to Johnson (2013) and others, we go on

to estimate grant receipt directly from the data.

Next, we estimate the amount of grants conditional on receiving grants as a Tobit model:

gri = αgr + f(Ii) + βgr4 AFQTi + βgr5 depkidsi + εgri . (21)

where f(Ii) is a spline function of parental income and εgri represents measurement error.

Besides grant generosity being need-based (convexly decreasing), generosity is also merit-

based as β̂gr4 > 0 and increases with the number of other dependent children (besides the

considered student) in the family.
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Table 4: OLS for Grants

AFQT Dependent Children

Coe�cient 39.40*** 321.75**
Standard Error ( 5.03) (106.39)

N=968. * p ≤ 0.10, ** p ≤ 0.05, *** p ≤ 0.01.

B.4 Wage Paths

Recall that the regression equation reads as

∀ e = H,G : log yeit = βes0 + βeθ log θi + βet1t+ βet2t
2 + βet3t

3 + ve∗i .

We estimate the age coe�cients βet1, β
e
t2 , βet3 using panel data from the NLSY79 since

individuals in the NSLY97 are too young (born between 1980 and 1984) such that we can

infer how wages evolve once individuals are older than 35.

In the second step, we build the transformed variable l̃og yeit = log yeit − βet t − βet2t
2 −

βet3t
3, which takes out age a�ects from yearly log incomes. Using the NLSY97, we estimate

the relationship of log income with gender and log AFQT, estimating separate models and

coe�cients by education level. We use a random-e�ects estimator and assume normality,

yielding education speci�c variances for vei . The estimates are displayed in Table 5. There is a

signi�cant college premium in the model, although the high-school constant is larger, because

we have used education dependent age pro�les.

Table 5: Regressions: Income

College Educated

Female Log AFQT Education Constant Variance vi

Coe�cient -0.14*** 0.47*** 3.06*** 0.42
Standard Error (0.02) (0.07) (0.35)

High-School Educated

Female Log AFQT Education Constant Variance vi

Coe�cient -0.25*** 0.31*** 7.11*** 0.36
Standard Error (0.01) (0.03) (0.35)

Random e�ect models, estimated with NLSY9. Dependent variable is log yearly income, cleaned for

age e�ects. Age e�ects are obtained by estimating a cubic polynomial on the NLSY79. These age

coe�cients are available upon request. N=10,165 (College) and N=19,955 (High-School) . * p ≤
0.10, ** p ≤ 0.05, *** p ≤ 0.01.

Next, we explain how to go from the estimated income to the wage pro�les. The reason

why we do not estimate wage pro�les directly is that we append Pareto tails to the income dis-
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tribution on which more reliable information is available. Top incomes are underrepresented

in the NLSY as in most survey data sets. Following common practice in the optimal tax liter-

ature (Piketty and Saez, 2013), we therefore append Pareto tails to each income distribution,

starting at incomes of $150,000. We set the shape parameter α of the Pareto distribution to

1.5 for all income distributions.

Next we describe the mapping from y to w as in Saez (2001). Given the utility function we

assume with no income e�ects, in each year individuals solve a static labor supply problem

where optimal labor supply in that year only depends on the current wage (which evolves over

the life-cycle) and marginal tax distortions. It is easy to show that the �rst-order condition

for an individual facing a marginal tax rate schedule is

lnw =
ε+ τ

1 + ε
ln y − 1

1 + ε
ln(λ (1− τ)),

if the tax function is of the form T (y) = y − ρy1−τ . Using the estimates from the regression

model, we can express the wage for a given type (age, gender, ability, education) as at age t:

lnwit =
ε+ τ

1 + ε

(
β̂es0 + β̂eθ log θi + β̂et t+ β̂et2t

2 + β̂et3t
3 + ve

∗

i

)
− 1

1 + ε
ln(λ (1− τ)).

B.5 Details: Parent's Problem

The parent's problem begins when the parent turns 20 years old. Each year the parent receives

income and makes consumption/saving decisions. We assume that all parents make transfers

to their children at the year which corresponds to t = 1 for the child and an age of 43 for the

parent.65 Parents start the model with 0 assets and live until age 65.

For all years when the transfer is not given, the parent simply chooses how much to consume

and save. Let V P
t denote the parent's value function in year t. We can write this as

V P
t

(
X, I, aPt

)
= max

c

[
c1−γ

1− γ
+ βV P

t+1

(
X, I, aPt+1

)]
,

subject to:

c = yPit + (1 + r) aPit − aPit+1

where aPt is the parent's assets in year t and yPit is the parent's income in year t.

In the year of the transfer, the parent also receives utility from transfers. In this year, we

write the parent's Bellman equation as

65This will correspond to age 18 of the child if the parent gave birth to the child at age 25. This is the
median age a mother gave birth to their child in the NLSY97.
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V P
t

(
X, I, aPt

)
= max

c,trhs,trcol

[
c1−γ

1− γ
+ F

(
trhs, trcol, X, I

)
+ βE

[
V P
t+1

(
X, I, aPt+1 − tre

)]]
subject to:

c = yPit + (1 + r) aPit − aPit+1.

where trhs and trcol are the transfers o�ered conditional on the child's education choice, and

tre are the realized transfers. As the parent must commit to transfers before the child's college

preference shock is realized, the child's college choice and therefore the value of tre is stochastic

at the time the parent chooses the transfer in the eyes of the parent. F
(
trhs, trcol, X, I

)
is the

expected utility the parent receives from the transfer schedule trhs, trcol and is de�ned in the

main text.

Parent's Earnings Pro�le Calibration We assume that parental earnings are determined

by a similar process to the child's earnings. Speci�cally, parental earnings are given by

∀ e = H,G : log yPt = βParEdut1 ParAget + βParEdut2 ParAge2
t + βParEdut3 ParAge3

t + vP .

where ParAget is the parent's age in period t. The age coe�cients, βParEdut1 , βParEdut2 , and

βParEdut3 are taken from the child's earnings regression. We assume that the parent's age

coe�cients are given by the college age coe�cients if at least one parent has attended college,

otherwise the parent's age coe�cients are given by the age coe�cients for a child that has not

attended college.

The term vP represents persistent, idiosyncratic di�erences in earnings across parents.

We assume that we observe the parental income variable I when parents are 40 years old.

Therefore, we must have y40 = I for each parent we observe in data. We therefore choose vP

such that the predicted parental income at age 40 is equal to the observed parental income

variable I. We can write this as

vP = log I −
(
βParEdut1 ParAget + βParEdut2 ParAge2

t + βParEdut3 ParAge3
t

)
.
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(a) Enrollment Rates and Parental Income (b) Enrollment Rates and AFQT

Figure 18: Graduation and Enrollment Rates by Gender

Figure 19: College and High School Graduate Earnings Pro�les.

B.6 Enrollment by Gender

B.7 Earnings Pro�les Model

B.8 Calibration: Endogenous Ability

For computational simplicity, we do not allow �nancial aid to depend on merit in this section.

Initial ability, θ0, is unobserved to the econometrician. So we assume that θ is distributed

as:

ln θ0 = β ln I + ε

where ε is normally distributed. We choose β and the variance of ε to match the variance

of log childhood ability and covariance of log childhood ability and log parental income from

Agostinelli and Wiswall (2016).
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We re-normalize our measure of θ to match the mean and variance of the measure of �nal

log cognitive skill from Agostinelli and Wiswall (2016). The remaining parameters to calibrate

are:

1. A- TFP of parental production function.

2. γ1 - weight on initial ability

3. γ2 - weight on parental investment

4. γ3 - interaction term

5. σι - variance of ι.

We set γ1 equal to the product of the coe�cients on lagged ability from Agostinelli and Wiswall

(2016) γ1,1γ1,2γ1,3γ1,4 ≈ 2. This approximation will be true if the terms on the interation terms

in Agostinelli and Wiswall (2016) are close to zero in all years after the �rst year.

Then we have four parameters, A, γ2, σ
ι, and γ3. We choose these parameters to match

the four following moments:

1. Mean of θ

2. Variance of θ

3. Covariance of θ and parental income I.

4. From Agostinelli and Wiswall (2016): The e�ect on realized years of schooling of a

monetary transfer to parents is roughly ten times larger for parents in the 10th percentile

of the income distribution compared to those in the 90th percentile.

Loosely speaking, the covariance of θ and I helps to pin down the importance of parental

monetary investments γ2. The variance of θ helps to pin down the variance to shock of ability

production, σι. The di�erential e�ect of monetary transfers for rich and poor parents helps

to pin down the interaction between parental investment and initial ability, γ3. Finally, the

average ability level helps to discipline the TFP of the production function, γ1.

The parents problem can therefore be written as:

max
Invest

Eι
[
Ṽ
(
θ (θ0, Invest, ι) , a

P
0 − Invest

)]
where the value function Ṽ

(
θ, aP0 − Invest

)
is the parents value function and aP0 is the parent's

assets at the beginning of the model. For simplicity, we assume that grants are only a function

of income when solving the model with endogenous ability. This considerable simpli�es the

model solution.
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B.9 Varying Borrowing Constraints

To get a sense of how varying borrowing constraints would a�ect our main conclusions, we

have re-estimated a version of the model in which the borrowing limit depends on parental

resources.

Here, it was very hard for us to get guidance on what would be a reasonable way to have

exogenous borrowing constraints depend on parental income and ability of the child. Hence,

we have decided to report a very simple and transparent case in the paper: we assume that

children whose both parents have a college degree can borrow twice the amount of the Sta�ord

loan limit. Admittedly, this is ad-hoc in two ways. The �rst ad-hoc decision is to separate

children along the parental education dimension. Our motivation was that parental education

strongly correlates with both parental earnings and child's ability. The second ad-hoc decision

we faced was: how much more can these children with highly educated parents borrow? We

here decided to just double the amount in the case that we report.

The optimal utilitarian �nancial aid with parental education dependent borrowing con-

straints are shown in Figure 20. The shape is slightly di�erent from the baseline optimal

schedule, as changes in the borrowing constraints lead to changes in the distribution of the

marginal social welfare weights.66 However, the optimal �nancial aid is still highly progressive.

Figure 20: Optimal Financial Aid with Parental Education Dependent Borrowing Constraints

66As we have shown earlier, relaxing borrowing constraints for all students reduces the progressivity of the
optimal aid schedule. That force is still present here, as some low income students have two college educated
parents. However, this force is partially muted by the fact that parental education is increasing in parental
income. As such, the optimal aid schedule here is more progressive than the case with relaxed borrowing con-
straints for all individuals, but slightly less progressive than the baseline case with equal borrowing constraints
for all students.
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B.10 Details: General Equilibrium Wages

We assume identical perfectly competitive �rms use CES production functions which combine

skilled and unskilled labor. Therefore, wages are determined as a function of the ratio of the

total skilled labor to the total unskilled labor.

Let PU and P S denote the endogenously determined e�ciency wages for unskilled and

skilled workers, respectively, where skilled workers are those with a college degree and unskilled

workers are high school graduates. We allocate half of college dropouts to each of the skill

groups, as is common in the literature (e.g. Card and Lemieux (2001)). Suppose an agent's

wages can be written as the product of her e�ciency wage and her quantity of e�ciency units

of labor supplied: wit = P skHit, where sk ∈ {unskilled, skilled} denotes skill level and Hit

denotes agent i's level of human capital.67

We assume perfectly competitive labor markets. Production at the representative �rm is a

CES function combining skilled and unskilled labor:

Y = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)σ/(σ−1)

where A is total factor productivity, λ is the factor intensity of skilled labor, and σ is the

elasticity of substitution between skilled and unskilled labor. We assume σ = 2. S and U

represent the total amount of human capital units supplied by skilled and unskilled workers.

We assume the economy is in a long run steady-state equilibrium, and that the economy

consists of identical overlapping cohorts. Therefore, as cohorts are identical, the total labor

supply in the steady-state equilibrium is equal to the total amount of labor supplied over the

life-cycle for a given cohort.

Therefore, we can write:

S =
∑
i

∑
t

Hit`itI (ski = skilled)

and

U =
∑
i

∑
t

Hit`itI (ski = unskilled)

.

E�ciency wages are given by the �rst order conditions of the �rm's pro�t maximization

problem:

67We normalize units of human capital such that Hit = 1 is an e�ciency unit of labor is de�ned as the
labor supplied by a male worker whose log wages at age 18 are equal to the constant of the wage equation.
Therefore, the constants of the wage functions for skilled and unskilled workers are equal to the logs of the
e�ciency wages for skilled and unskilled workers.
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P S = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)1/(σ−1)
λS−1/σ

and

PU = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)1/(σ−1)
(1− λ)U−1/σ.

These two functions determine wages endogenously as functions of labor supply.
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