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Abstract 

Social interactions are crucial to a city's cohesion, and the high frequency of 
interaction reflects many benefits of density. However, adverse environmental 
conditions, such as pollution or pandemics, may critically affect these interactions 
as they shift preferences over meeting locations and partners. Some interactions 
may be shifted to the virtual space, while other non-planned interactions may 
disappear. We analyze spatial interaction networks in Singapore covering about half 
of the adult population at a fine-grained spatial resolution to understand the 
importance of population mixing and places' amenities for urban network resilience. 
We document that environmental shocks negatively affect total interactions. Still, 
conditional on meeting physically, the number and type of location options may 
crucially impact the intensity and type of social interactions. The interplay between 
preferences for meetings partners, locations, and mobility determines population 
mixing and the fragility of urban social networks. 
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“Man is by nature a social animal; an individual who is unsocial

naturally and not accidentally is either beneath our notice or more than

human. Society is something that precedes the individual.”

— Aristotle, Politics, 4th century B.C.

1 Introduction

Social interactions are the bedrock of any community. Cities bring about crucial density

benefits by fostering diverse social interactions. At the individual level, social interactions

are the product of preferences over both meeting partners and meeting locations. However,

while the economic literature has extensively focused on the outcomes of social interactions

and the related endogeneity issues1 – e.g., to study peer-effects, knowledge spillovers, criminal

networks, or consumption behaviors (Glaeser, 1999; Batty, 2013; Helsley and Zenou, 2014;

Blume et al., 2015; Jackson et al., 2017; De Giorgi et al., 2020; Atkin et al., 2022), little is

known about how shocks on preferences for meeting partners and places affect urban social

interactions. What are the social ties and places that glue a city’s network together?

This paper presents novel facts about how preferences shape urban social networks for

meeting places and partners. We analyze a time series of meetings to study how meetings

adjust to adverse conditions. In many aspects, the urban form fosters social interactions.

Some public infrastructures such as parks and community centers are, in essence, designed

to support meetings and population mixing. However, environmental shocks, such as urban

heat, air pollution, or the COVID-19 pandemic affect or constrain preferences for meeting

partners and meeting locations. In turn, these mobility frictions limit the number and type of

social interactions. Given that environmental shocks are expected to become more frequent

and intense (IPCC, 2019), understanding the role of locations in mitigating these adverse

impacts on the urban social network is of prime importance.

Yet, despite its relevance, the impact of adverse environmental shocks on social interac-

tions in cities has hardly been explored systematically. Here, we address this gap by analyzing

society-wide spatial interaction networks in Singapore at a fine-grained spatial resolution. Our

1The literature workhorse, Manski (1993), underlines the reflection problem for linear-in-means network
models – i.e., the difficulty for the researcher to disentangle peer effects from contextual effects. See Boucher
and Fortin (2016) for a discussion of the issues and solutions highlighted by the recent literature.
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analysis builds on a unique dataset on mobility and meetings covering more than half of the

adult population of this country. We focus on leisure time meetings to ensure that individuals’

preferences for meeting places and partners determine the meeting network rather than job-

related patterns. The consumption value of cities has been studied in Glaeser et al. (2001);

Davis et al. (2019) and recently highlighted in Miyauchi et al. (2022). While we acknowl-

edge adverse meeting conditions are likely to impact work-related interactions, we believe

that labor days do not inform us about how networks adapt to shocks because the working

environment determines most meeting partners and places. Singapore generally provides a

particularly well-suited case to analyze city networks as it displays a high population density

and a diverse population composition of different ethnic backgrounds. Urban planning in Sin-

gapore intensely and openly aims at fostering spatial interactions through various measures

(e.g., parks, events, residential quotas, etc.). Thus, it may provide an ‘upper bound’ of spa-

tial interactivity, and we may expect more drastic disconnection effects in more decentrally

organized cities.

We first show that specific meeting ties of the city network are bridging clusters (i.e.,

otherwise independent groups of individuals) within the city. We characterize these bridging

ties in terms of their network and sociodemographic characteristics. These ties are important

for the city network not to collapse into many independent clusters – or ‘villages’. These

bridges between network clusters are particularly fragile during adverse meeting conditions.

Unlike close tie meetings, those fragile ties that link different network clusters are mostly

non-planned meetings and can thus not be substituted by virtual interactions. While this

paper investigates how mobility patterns affect the network adaptation to shocks, we com-

pute the substitution rate between face-to-face and digital meetings for different categories of

individuals and ties in a related project.

Our main results are striking but intuitive. First, meeting probability declines on aver-

age by 81 percent during the strict COVID measures and by 5 to 8 percent during adverse

environmental conditions. Second, we find that the COVID-19 and environmental shocks

significantly affect the relative desirability of locations. For instance, high pollution makes

meetings in parks less attractive, whereas high temperatures make them more appealing. We

then document that while shocks negatively affect total interactions at the extensive margin,

fewer meeting location possibilities may foster population mixing for those who still decide to
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meet. In other words, there is a trade-off between total interactions and mixing opportunities

determined mainly by meeting location diversity. Accordingly, adverse shocks indirectly affect

exposure to people’s diversity, bridge creation, and survival. Overall, the COVID-19 shock

led to a less diverse meeting environment (measured by the network overlap of individuals),

while the environmental shocks led to a more diverse network. These effects crucially depend

on how shocks affect certain places with different amenities. Places’ diversity is shown to help

mitigate mobility shocks on the city’s network.

While most of the existing work abstracts away this spatial dimension, some more recent

papers link social interactions and urban structure (Mossay and Picard, 2011; Zenou, 2013;

Sato and Zenou, 2015; Moro, Calacci, Dong, and Pentland, 2021). Closer to our work is

Patacchini, Picard, and Zenou (2015), which specifically study how agents’ locations affect

social interactions between them. In their framework, agents meet with everyone else, deciding

the frequency of meetings with every other agent to maximize their utility. The distance

between two agents symmetrically defines costs. Nevertheless, although this paper recognizes

the importance of agents’ location for interactions, it does not incorporate the possibility of

different agents having different preferences over locations. We rather assume that agents

meet not only because they are close to one another but also because there is a suitable place

to meet (according to their preferences) close enough to both.

Other recent studies have empirically documented the importance of population density

for forming social networks (Schläpfer et al., 2014; Bailey et al., 2020; Büchel and Ehrlich,

2020; Kim et al., 2020). We add to this literature by exploring the role of specific places and

the consequences of adverse conditions for regular meetings of individuals. Another related

strand of literature focuses on social homophily and mobility. Recent contributions include

Athey et al. (2020); Davis et al. (2019); Abbiasov (2021). These papers often proxy social

segregation with spatial segregation. The consequences of COVID-19 on mobility are studied

in Couture et al. (2021). Larcom et al. (2017) analyzed the persistent mobility responses

to a shock in London’s tube system caused by a strike. These papers focus on individual

mobility without providing direct insights about the (probability of) meetings of individuals

from different population groups and thus mixing within cities. We also contribute to the

literature on environmental shocks. While the impact of adverse environmental conditions

has been studied for amenities (e.g., Rappaport (2007)), disamenities (e.g., Heilmann et al.
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(2021)), urban development (e.g., Kocornik-Mina et al. (2020)), and housing prices (e.g.

Barrage and Furst (2019)), to the best of our knowledge, our analysis is the first to study the

consequences for urban interactions.2

2 Inferring spatial interaction networks

Our analysis focuses on a network realized via face-to-face meetings. We generally understand

those meetings as the co-locations of two individuals in a granular space and for a minimum

time window.

2.1 Weighted interaction networks

The empirical analysis builds on anonymized trajectory data (time-stamped location records)

derived from mobile phone records of the main provider. The data cover approximately 4.1

million mobile subscribers of Singapore’s largest telecommunication service provider. Notably,

the network is directly obtained from the cell phone provider such that mobility is observed

independent of the use of specific apps. The networks are based on pre-existing stay-location

data, including socio-demographic attributes (age, gender, and ethnicity). We drop all in-

dividuals for which we lack socio-demographic attributes, could opt out of data usage, and

require individuals to be active regularly in the observed time period. This brings the number

of individuals included in the analysis to about 1.2 million. We model the anonymized mobile

phone users as nodes and their socio-demographic attributes as node attributes. We define

a link between each pair of nodes if two individuals share the same space during the same

time.3 To that end, we partition the urban space into regular hexagons with a side length of

25 meters and discretize time into regular intervals of 30 minutes. A meeting of two individ-

uals, and thus a link in the network, is then defined as an observation of the two individuals

being within the same hexagon within the same time interval. The weight of a link represents

the total number of time intervals that two users spent together within the same hexagon.

However, despite the high granularity of our spatial resolution, we cannot observe whether

two individuals actually interacted with each other. Hence, our measure may also be under-

2See also Dell et al. (2014) for an overview.
3To ensure the anonymity of the data, we do not observe the time of the meeting.

5



stood as a co-location that enables a potential interaction. To isolate intentional meetings, we

also use repeated co-locations at different locations within the same day or across days. Our

analysis focuses on leisure time meetings where individuals flexibly choose whom to meet and

where to go while we abstract from work-related meetings. Thus, we focus on the meeting

networks observed on Sundays. Table A 1 shows the descriptive statistics for meetings on a

“base Sunday”. We observe, on average, about 111 million meetings as defined above. The

average time spent on these meetings amounts to about 4 hours and 15 minutes with a stan-

dard deviation of two hours and 51 minutes. The lion’s share of these meetings took place in

the home area as defined by Singaporean planning areas (see Figure A.1). Other very popular

meeting areas include parks (more than two hours on average) and the downtown area (about

one hour of meetings).

2.2 Meeting locations

We observe meetings at different locations, which we classify into location types such as

parks, shopping malls, community centers, residential neighborhoods, etc. Figure 1 displays

the density of meetings on a base day (no adverse conditions) for the Singapore ‘planning

areas’ (granular census areas). While we observe whether each pair of individuals met within

small hexagons, we can only infer the location of these hexagons at a much more aggregated

level to preserve the anonymity of the data. Singapore comprises 55 planning areas for which

we link detailed information about the type of activities, land use, residential composition, etc.

In addition, we estimate the home location of each user by following a common procedure

Schläpfer et al. (2021). Specifically, we select as home location the planning area which

has been most frequently visited (number of distinct days) by the user. If the user visited

several planning areas with the same maximum frequency, we would select the area where the

user spent most of his/her time (as far as measured through the spatial interactions). The

comparison of our inferred home locations with the census data shows a strong correlation

(R = 0.99, see Fig. A.2).

We further distinguish between face-to-face meetings that take place in different planning

areas such as the downtown core of the city Ldownt. and the most Lmost versus least frequently

visited planning areas Lleast. The latter is obtained as the ratio of bilateral meetings per
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squared kilometer. Another meeting place we distinguish are parks Lpark, which are inferred

from more disaggregated location data.

2.3 Types of shocks

We study three types of adverse meeting conditions influencing the costs of physical meet-

ings. The first type covers different intensities of mobility restrictions during the COVID-19

pandemic. These scenarios imply not only that the costs of meetings increase due to the risk

of virus infections, but they also reflect restrictions aimed at a coordinated reduction in phys-

ical meetings. The second and third scenarios reflect adverse environmental conditions that

changed the costs of meetings at specific places. For instance, urban heat may have increased

the average costs of travel but reduced the relative costs of meeting in parks or shopping malls

that shelter from the heat.

- COVID 1 : “circuit breaker”; during this time workplaces were closed and home school-

ing was mandatory. Moreover, restaurants were closed and no private visits of friends

and family were possible..

- COVID 2 : “safe reopening”; work from home if possible; some services reopen; visit of

2 person (parents, grandparents); limited school attendance.

- COVID 3 : “safe transition”; retail businesses open; dine-in at restaurants; sports other

public facilities open.

- Pollution: 24-hour PSI (Pollutant Standards Index) > 90-100; unhealthy level (next:

very unhealthy, hazardous). See Figure A.4 for time variation in the degree of air

pollution in Singapore.

- Heat : ≥ 25% increase of temperature over the monthly mean (7.5 degree celsius)

The most pronounced increase in meeting costs occurs during COVID 1. This is the early

phase of the pandemic and is an important reference point because it represents the maximum

restriction of meetings we have possibly seen so far in modern cities. This was the time of the
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circuit breaker when workplaces were closed, schooling took place at home, all restaurants

and shops except grocery shops were closed, and no private visits of friends were allowed. The

other shocks are much less pronounced and different in several ways. Urban heat and pollution

are adverse meeting conditions expected to become more frequent with climate change and

urban growth. Moreover, these shocks do not lead to coordinated reductions in meetings,

but people respond individually via their location preferences. In the following, we denote

the shocks, i.e. day conditions by T pollution, T heat, TCOV ID1, TCOV ID2 and TCOV ID3 where

the reference condition is the base day with normal meeting conditions (absence of adverse

conditions).

3 Aggregate network fragility and importance of ties

How fast does the aggregate network collapse into a separate cluster during adverse meeting

conditions? To quantify the aggregate fragility of the spatial interaction networks, we apply

the framework of ‘percolation analysis’(Newman, 2010). This also allows us to identify essen-

tial links for network stability. Specifically, we probe the network’s connectivity by counting

the number of nodes (size), G, of the ‘giant component,’ being the largest connected set of

nodes. We study this quantity as a function of the progressive removal of network links, with

each link removal simulating the loss of a specific spatial interaction between two individuals.

The fragility of the network is then given by the number of links that need to be removed so

that the network becomes totally fragmented: the sooner the network fragments, the more

fragile it is.

As shown in Figure 1, the interaction network becomes more fragile under adverse condi-

tions, further depending on the nature of the condition.

Most of the adverse conditions considered in this study lead to an effective reduction in

the spatial interactions and thus to a reduction in the network’s connectivity as reflected in

a lower average degree 〈k〉 (average number of links per individual). This connectivity loss

explains the increased fragility of the networks under adverse conditions (a lower number of

links needs to be removed to induce a complete network disconnection).

An important question arises as to whether adverse conditions may not only decrease the

number of links but also lead to systematic changes in the network structure that may further
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Figure 1: Quantifying the fragility of networks through percolation analysis. We measure the size of the
largest component (largest number of connected nodes in the network), G, as a function of the number of
progressively removed links. In a fragile network, the removal of a small number of links results into a complete
fragmentation of the network (G ≈ 0). Upper panel: random selection and removal of links. Lower panel:
links are selected and removed according to their Jaccard index (links with low values of Jij are removed first).
Colours and symbols are as those in the upper panel.
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increase the network fragility and reduce the spatial interactions between different population

groups. For instance, one can expect that people form stronger local clusters during shocks

due to reduced mobility across the city (i.e., they prefer to stay within their neighborhoods).

This may lead to a disproportionate loss of weak ties that act as important bridges between

tight-knit network communities.

To test this hypothesis, we calculate for each link i↔ j the Jaccard similarity coefficient,

which quantifies the overlap of the common encounters of the two given individuals i and j.

More precisely, for each link in the network the Jaccard coefficient is defined as (Leicht et al.,

2006)

Jsocial
ij =

nij
ki + kj − nij

, (1)

where nij is the number of common encounters of nodes i and j, and ki (kj) denotes the

degree (number of links) of node i (j). If i and j have no common encounters, then we have

Jij = 0. If i and j are part of the same circle of spatial encounters, and ki = kj = nij then

Jij = 1. In all other cases we get a value somewhere in between.

As such, links with high values of Jij connect individuals within a tightly-knit circle of

individuals, while links with low values of Jij act as potential bridges between those commu-

nities (Onnela et al., 2007). Indeed, as depicted in the lower panel of Fig. 1, the targeted

removal of these bridges (identified through low values of Jij) leads to a much faster fragmen-

tation of the interaction networks than the random removal of links. These bridges thus act

as a ‘glue’ of the spatial interaction network. They also tend to be formed by more diverse

individuals (compared to high-Jij links within tight-knit groups), see Fig. A.3.

We contrast this to the spatial Jaccard:

Jspatial
ij =

lij
Li + Lj − lij

, (2)

where Li and Lj are the distinct places an individual visits and lij are the common places i

and j visit.
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4 Shocks and urban social networks

In a first step we study how shocks affect exposure to diversity with regard to where people

meet and with whom they meet. We base our results on a simple estimation equation:

Y l
i,t = γi + γt + βT condition + εi,t, (3)

where Yi,t represents either the log odds of meetings (extensive margin), the log number of

meetings or the log average time spent per meeting (intensive margin). We denote the location

of a meeting of individual i at time t. The superscript l can either refer to a specific place where

co-location occurs or refer to overall (non-place specific) co-locations. The reference category

is in each specification the “base Sunday” where we observe neither COVID-19 restrictions

nor adverse environmental conditions. γi is an individual specific fixed effect capturing the

overall meeting probability of an individual or – put differently, her overall mobility and social

meeting behavior. In a next step, we zoom in on specific places and specific meeting partners

to explore how individuals discriminate between meetings’ partners and places during adverse

conditions.

4.1 How do shocks affect who people meet?

We begin our analysis of the reactions of the Singaporean society to COVID-19 and envi-

ronmental shocks first by investigating the strength of these shocks for the overall density of

the network and second by examining the heterogeneous impacts of these shocks on different

types of meeting ties. Table 1 is a general depiction of how shocks affect who people meet.

Overall, both COVID and environmental shocks lead to statistically significant, and large

drops in the number of meetings individuals have compared to a standard base Sunday. This

effect varies with the level of coordination in response to these shocks. For instance, in the

first phase of the COVID-19 response (COVID 1), individuals met with 76.5% fewer people

than on an average Sunday. This semi-elasticity falls to -49.9% on COVID 2 and -31.4% on

COVID 3 when the Singaporean government lifted most pandemic-related restrictions. High

pollution leads to a total decrease of 5.8% in the number of meetings, and high temperatures

to a decrease of 3.1%. All coefficients are significant at the .001 level.
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Table 1: How do shocks affect who people meet?

Socio-demographic Indices
Overall Same Ethnicity Same Age Same Home Area

Log Meetings Log Avg. Time Log Meetings Log Avg. Time Log Meetings Log Avg. Time Log Meetings Log Avg. Time

Covid 1 -0.765*** 0.906*** -0.744*** 0.895*** -0.723*** 0.877*** -0.341*** 0.754***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Covid 2 -0.499*** 0.581*** -0.491*** 0.577*** -0.479*** 0.567*** -0.195*** 0.462***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Covid 3 -0.314*** 0.279*** -0.312*** 0.275*** -0.305*** 0.269*** -0.104*** 0.212***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High Poll. -0.058*** -0.017*** -0.056*** -0.019*** -0.051*** -0.020*** -0.076*** 0.009***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High Temp. -0.031*** -0.009*** -0.031*** -0.009*** -0.030*** -0.009*** -0.045*** -0.010***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 8,387,440 8,387,440 8,387,440 8,210,249 8,387,440 8,139,681 8,387,440 8,197,823
Individual FE Y Y Y Y Y Y Y Y
R2 0.51 0.54 0.64 0.52 0.55 0.51 0.58 0.52

(i) Standard errors are clustered at the individual level and reported in parentheses ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. (ii) Each section reports both the log number of meetings
and the log average time spent per meeting. The last two section focus on meetings with same demographics. (iii) E.g. Compared to a normal Sunday, Covid 1 reduces total
meetings by 76.5%, but, on average, each meeting lasts 90.6% longer.

The first lesson one may draw from such a table is that the semi-elasticities of environmen-

tal shocks are not as qualitatively small as expected. Indeed, the COVID pandemic responses

provide us with an upper benchmark to assess the size of the response to environmental

shocks and provide perspective. The response to high pollution is 18.5%(-.058/-.314) the size

of the reaction to COVID 3, and 7.6% (-.058/-.765) the size of the reaction to COVID 1 –

when meetings outside of the close family bubble were forbidden. Thus, these apparently

smaller coefficients shall not be overlooked, given that the COVID pandemic is (hopefully) a

once-in-a-century episode while high pollution occurs on a much more frequent basis.4

The second lesson is that people compensated for fewer meetings with longer meeting

times during the pandemic. The average time spent per meeting increased even more during

COVID 2 and 3 as the local authorities gradually lifted restrictive measures. This behavior

is likely the translation of a catch-up effect whereby individuals would spend more time

with acquaintances they were not allowed to meet in person during COVID 1. Generally,

we understand the network responses during the pandemic as being driven by a regulated

selection of meeting partners and locations, thus causing a behavioral reaction both to the

shock (i.e., the virus circulation) and the regulation itself (i.e., home isolation). Absent such

a regulation, individuals still meet less, but reductions in meeting times are much shorter –

by 1.7% and 0.9% during the high pollution and high-temperature case, respectively.

4Between 2014 and 2021, Singapore suffered from 892 hours (i.e., 37.17 days) of high pollution with a
Pollution Standard Index above 100 – considered unhealthy by the local authorities. Figure A.4 depicts the
pollution time series.
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The third lesson is that the intensity of the response to both COVID and environmental

shocks was systematically lower when people share the same age or ethnicity than the average

population result. While these semi-elasticities are statistically significantly different from

the corresponding general responses to shocks, differences remain small compared to the size

of the overall reaction. For instance, people only met 5.6% fewer individuals of the same

ethnicity during high pollution, while they generally met 5.8% fewer people. This pattern

holds for all shocks, seemingly indicating that people discriminate at the margin against

meeting partners’ demographics under adverse conditions. The same results hold regarding

the average times per meeting. We observed the intensity of the response to both COVID and

environmental shocks was systematically lower when people share the same age or ethnicity

than the average population result. The differences in the effects are relatively small, and

their direction may be mechanical: under fixed time endowment, clustering or co-locating

with more people with similar social traits naturally implies spending less time with them,

individually, on average. With regard to gender, we have estimated an analogous specification

but do not find significant and qualitatively relevant differences.

Finally, while we do not observe that shocks cause a large social discrimination response,

the results do indicate that they induce a significant spatial discrimination response. As

expected, the impacts of the COVID shocks are much smaller for individuals sharing the same

home area: they are reduced by 34.1% during COVID 1 for those with the same home area,

compared to 76.5% for all individuals independent of their home area. However – perhaps,

more interestingly, the impacts of environmental shocks are larger on meetings in the same

home area: they are reduced by 7.6% during high pollution in the same home area, compared

to 5.8% overall. Together, these results highlight that shocks cause a spatial reaction to the

network: people do not meet at the same place as on a base day.

As has been argued above, individuals differ in many other attributes than age, ethnicity,

gender, or home neighborhood which are relevant for the degree of mixing in city network but

mostly unobservable. Therefore we follow a network-based definition of similarity between

the two nodes of a tie. We compute for each tie the Jaccard similarity Ji,j and evaluate the

distribution of Ji,j during different conditions as illustrated in Figure 2.

The figure shows that the distribution of the average Jaccard flattens with the intensity of

the COVID shock relative to the base days (green lines). On the one hand, the distribution’s
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Figure 2: (i) Kernel density distributions of individual average Jaccard indices by type of shock. (ii) Dashed
lines depict the distribution’s mean. (iii) Conditional on meeting, on average individual meet with more
partners having a similar network during COVID-19 shocks, but meet with are exposed to more population
diversity during high pollution and high temperature. shocks

14



right tail becomes significantly thicker, indicating that individuals tended to meet significantly

more with people sharing the same sub-network during the pandemic. On the other hand,

the left part of the distribution got significantly thinner, indicating that people met signifi-

cantly less with individuals sharing different sub-networks, hence drawing fewer ‘bridges’ and

fragilizing the network. In other words, during COVID and because of the subsequent meet-

ing restrictions, not only did individuals meet less, but the city network collapsed into many

urban ‘villages’ defined by local close-ties clusters.

However, this statement is challenged by changes in the average Jaccards’ distribution

during environmental shocks, during which individuals can select meeting partners and meet-

ing places regardless of any regulation. Indeed, during unconstrained mobility shocks – high

pollution and high temperatures – the Jaccard distribution remains very close to the Jaccard

distribution during base days. This may indicate that individuals use spatial mobility to

smoothen the impact of shocks on their interactions.

A closer look at the Appendix Table A 2 confirms that, during the pandemic, individuals

encountered many more acquaintances with overlapping networks (+42% increase in Jaccard

index during COVID 1) and spent much more time with the high Jaccard contacts which

we refer to as close ties (+207.8% during COVID 1). Respectively, the pandemic seriously

harmed bridge creation (-116.8% low-Jaccard meetings and -106.4% average time per meeting

during COVID 1). Therefore, not only did the pandemic reduce the total number of meetings

(see Table 1), but it also affected the structure of the urban social network. Environmental

shocks also negatively affected the number of meetings displaying low Jaccard indices. Indi-

viduals encountered much fewer acquaintances with bridges (-7.4% decrease in Jaccard index

during high pollution). But, contrary to the COVID shocks, they also reduced meetings with

overlapping networks (-4.9% decrease in Jaccard index during high pollution). In other words,

all shocks affect bridge creation, but unconstrained mobility shocks also reduce the number of

close ties. Therefore, the latter’s impact on the average Jaccard is quasi-null (-0.8 percentage

points during high-pollution and -0.3 percentage points during high-temperature shocks). In

contrast, it is strongly positive when individuals’ mobility is constrained (+25.7 percentage

points during COVID 1).

To rationalize this result, we bring up the role of place selection. Network interactions

are drawn between different individuals, often originating from the same social background.
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At the extensive margin, these interactions’ existence depends on the diversity of places’

amenities. For instance, meeting during high pollution episodes is highly costly in the absence

of indoor meeting places. Likewise, meeting during a pandemic is very expensive without

outdoor spaces. Conditional on places’ diversity, individuals’ spatial mobility conditions the

network’s structure. In other words, individuals can use mobility to smoothen shocks on their

social network once provided with possible meeting locations.

4.2 How do shocks affect where people meet?

Table 2 describes the general meeting patterns for different locations. For each location, the

first column reports how shocks impact the odds of meeting with at least one individual – i.e.,

meetings at the extensive margin, and the other two columns report how the shocks impact

the number and duration of meetings – i.e., meetings at the intensive margin.

These results illustrate how shocks affect location preferences and, in doing so, how they

condition where people meet. Shocks affect choices for meeting location (and transportation

to that location) either through regulation (e.g., during COVID) or selection (e.g., during high

pollution). For instance, high pollution makes walking and outdoor spaces less attractive. A

fast-spreading virus causes underground transportation and clubbing to be less attractive.

Raw distance costs are time-invariant and, assuming that individuals do not change home

location, are entirely absorbed by individual fixed effects.

First and foremost, note that all shocks systematically reduce the odds of meetings in all

locations. This is consistent with the results in Table 1 and is indicative that a non-negligible

share of individuals responds to adverse conditions by not meeting at all – i.e., they leave the

(presential) network. Interestingly, these extensive margin responses to the shocks are the

largest and the smallest in the Downtown area – where indoor interactions are the most likely

– for COVID 1 and Pollution, respectively. In the first case, indoor interactions come at high

risk, while in the second case, they may reduce the adverse effects of pollution.

The first set of results in Table 2 describes how individuals sort between their home

and not home neighborhood. The impact on location preferences by distance from home is

striking. An order of magnitude separates the pandemics’ impact on the odds of meeting in

the home neighborhood compared to a different area. During COVID 1, the odds of meeting
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Table 2: How do shocks affect network formation in space?

Ext. margin Int. margin Ext. margin Int. margin
Log Odds Visit Log Meetings Log Avg. Time Log Odds Visit Log Meetings Log Avg. Time

HOME AREA NOT HOME AREA

Covid 1 -0.204*** -0.361*** 0.735*** -2.271*** -0.798*** 0.040***
(0.005) (0.001) (0.001) (0.004) (0.004) (0.002)

Covid 3 -0.383*** -0.121*** 0.201*** -0.945*** -0.379*** 0.020***
(0.005) (0.002) (0.001) (0.003) (0.003) (0.002)

High Poll. -0.350*** -0.049*** 0.023*** -0.104*** 0.071*** -0.011***
(0.005) (0.002) (0.001) (0.003) (0.003) (0.001)

Observations 1,521,236 3,584,086 3,584,086 2,896,896 1,491,137 1,491,137
Individual FE Y Y Y Y Y Y
R2 – 0.68 0.57 – 0.58 0.55
χ2 8,495.33 – – 510,432.09 – –

MOST FREQUENTED LEAST FREQUENTED

Covid 1 -1.411*** -0.585*** 0.685*** -1.176*** 0.073*** 0.353***
(0.004) (0.002) (0.001) (0.012) (0.015) (0.012)

Covid 3 -0.843*** -0.279*** 0.174*** -0.610*** -0.087*** 0.089***
(0.004) (0.002) (0.001) (0.011) (0.015) (0.011)

High Poll. -0.198*** -0.069*** 0.015*** -0.161*** 0.054*** -0.051***
(0.004) (0.002) (0.001) (0.010) (0.013) (0.010)

Observations 1,865,776 1,849,154 1,849,154 244,920 45,766 45,766
Individual FE Y Y Y Y Y Y
R2 – 0.65 0.72 – 0.71 0.74
χ2 141353.80 – – 11593.77 – –

DOWNTOWN PARKS

Covid 1 -2.915*** -1.200*** 0.362*** -1.133*** -0.307*** 0.350***
(0.018) (0.029) (0.012) (0.012) (0.019) (0.013)

Covid 3 -1.246*** -0.746*** 0.078*** -0.424*** -0.168*** 0.091***
(0.010) (0.021) (0.008) (0.010) (0.017) (0.012)

High Poll. -0.027*** -0.033** -0.008 -0.283*** -0.235*** -0.056***
(0.007) (0.015) (0.006) (0.010) (0.017) (0.012)

Observations 384,100 40,507 40,507 262,444 31,393 31,393
Individual FE Y Y Y Y Y Y
R2 – 0.76 0.71 – 0.71 0.70
χ2 70089.39 – – 9820.68 – –

(i) Standard errors reported in parentheses ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. (ii) Most Frequented and Least Frequented correspond to the
top and bottom 25% places in terms of co-location density, respectively (iii) Extensive (Intensive) margin of visits follows a logistic (OLS)
specification. (iv) In particular, columns 1 and 4 report the Log Odds Ratio (p/1-p) of visits. (v) E.g. Compared to a normal Sunday, Covid
1 reduces the odds of meeting in general in Not Home Area by 227%. Moreover, conditional meeting in Not Home Area, an individual
would meet on average 79.8% less people but spend 4% more time with them.
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in the home neighborhood were down by 20.4% compared to a base Sunday. During the

same period, the odds of meeting in a different area were down by 227.1% compared to a

base Sunday. Conditional on visits, people would meet 36.1% fewer acquaintances in the

home neighborhood during COVID 1, compared to 79.8% fewer acquaintances in a different

area. Conditional on meeting with these acquaintances, people would spend 73.5% more time

in the home neighborhood during COVID 1, compared to 4% more time in a different area.

Hence, the compensation via meeting time during COVID mainly occurs in the home location.

Mobility restrictions imposed during the phases of the pandemics clearly drive these effects.

However, during high pollution, the odds of meeting in the home neighborhood were down by

35% compared to a base Sunday. During the same period, the odds of meeting in a different

area were only down by 10.4%. Similarly, conditional on visits, people would meet 4.9% fewer

acquaintances in the home neighborhood during high pollution but 7.1% more acquaintances

in a different area. This set of results already suggests that individuals adapt their mobility

patterns in response to the changes in location opportunities caused by shocks both in the

COVID and in the polluted environment.

The second set of results in Table 2 describes how individuals sort between the most

and least frequented places on a base Sunday. Each category corresponds to the top and

bottom quartiles in the co-location density distribution on a base Sunday, respectively. At the

extensive margin, shocks more severely affect the chances of meeting in the most frequented

areas than in the least frequented areas. The odds of visits are down by 141.1% in the

most frequented areas and 117.6% in the least frequented ones during COVID 1. They

decreased by 19.8% in the most frequented areas and 16.1% in the least frequented ones

during high pollution. However, conditional on a visit, the intensity of the meeting response

was systematically significantly smaller in the most frequented areas compared to the least

frequented areas. For instance, conditional on a visit, individuals would meet 58.5% fewer

individuals in the most frequented areas during COVID 1 but 7.3% more individuals in the

least frequented ones. They would meet 27.9% fewer individuals in the most frequented

areas during COVID 3 but 8.7% fewer individuals in the least frequented ones. They would

meet 6.9% fewer individuals in the most frequented areas during COVID 3 but 5.4% more

individuals in the least frequented ones. Almost mechanically, the intensity of the response

in the time spent per meeting was significantly larger in the most frequented areas than in
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the least frequented areas. These results could indicate that individuals respond to adverse

conditions by favoring places with lower co-location density during the pandemic and the high

pollution days. In other words, people react at the intensive margin by meeting in locations

where individuals’ concentration is lower, hence likely to be less polluted and where a virus

spreads less quickly.

Finally, the third set of results in Table 2 illustrates how places’ characteristics matter for

individuals sorting. On the one hand, the Singapore Downtown area is a highly developed

location, featuring many indoor meeting spaces. Shopping malls and restaurants in the Down-

town area are very popular places on a base Sunday, as illustrated in Figure A.1. On the other

hand, parks are urban elements designed to provide outdoor meeting locations and environ-

mental amenities to individuals living in urban environments. At the extensive margin, people

would reduce more visits to the Downtown area (-291.5% - -124.6%) than to parks (- 113.3%

- -42.4%) during the pandemic. Respectively, they would reduce more visits to the parks

(-28.3%) than to the Downtown (-2.7%) area during the high pollution. The same patterns

are present at the intensive margin of meetings as well. Conditional on visits, people would

reduce the number of meetings in the Downtown area (-120% - -74.6%) more than to parks

(- 30.7% - -16.8%) during the pandemic. Respectively, they would reduce more meetings to

the parks (-23.5%) than to the Downtown (-3.3%) area during the high pollution. During the

pandemic, individuals compensated for fewer meetings with longer meeting times, whereas in-

dividuals would have shorter meetings outside during high pollution. Overall, nearby outdoor

areas are relatively favored during COVID, whereas indoor areas are relatively favored during

high pollution. Places’ characteristics condition individuals’ meeting possibilities. More gen-

erally, individuals discriminate against places deemed riskier concerning local environmental

conditions.

In conditioning people’s mobility through regulation or meeting place selection, shocks

affect population mixing. The regulatory measures in response to the COVID pandemic are

an extreme example of such a statement. During that time, individuals mostly interact in

their home area, which constraints most interactions with neighbors, who are likely to belong

to the same network cluster. However, when high pollution reduces the possibility of meeting

in open spaces, people wishing to leave their home area will likely converge to indoor areas –

bars, malls, theaters, etc. In the next section, we explore how shocks then affect the creation
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of bridges, which are crucial for urban network stability, as illustrated in section 3.

4.3 How do shocks affect mixing in space?

Section 4.1 documented how individuals reduced encounters but did not necessarily discrim-

inate against meeting partners based on social homophily. Constrained mobility shocks en-

courage meeting with individuals belonging to the same cluster, whereas mobility was used to

smooth the impact of uncoordinated shocks on the network’s structure. However, section 4.2,

however, illustrated that shocks induce people to discriminate against meeting locations’ char-

acteristics. Table 3 now shows how shocks impact the mixing patterns in space as measured

by the Jaccard indices at different places.

Table 3: Aggregate effect of shocks on social mixing by location

Home Not Home Most Freq. Least Freq. Downtown Parks
µ = .224 µ = .144 µ = .216 µ = .088 µ = .148 µ = .06

σ = .118 σ = .156 σ = .135 σ = .029 σ = .138 σ = .085

Covid 1 0.278*** 0.044*** 0.243*** 0.149*** 0.049*** 0.071***
(0.000) (0.000) (0.000) (0.002) (0.002) (0.002)

Covid 3 0.063*** 0.006*** 0.041*** 0.030*** -0.014*** 0.013***
(0.000) (0.000) (0.000) (0.002) (0.002) (0.001)

High Poll. -0.007*** 0.002*** -0.007*** -0.001 -0.003** -0.014***
(0.000) (0.000) (0.000) (0.002) (0.001) (0.001)

Observations 3,584,086 1,491,137 1,849,154 45,766 40,507 31,393
Individual FE Y Y Y Y Y Y
R2 0.65 0.49 0.66 0.66 0.69 0.64

(i) Standard errors reported in parentheses ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. (ii) Dependent variable
is the individual average Jaccard Index per individual, day, and location (iii) Most Frequented and Least
Frequented correspond to the top and bottom 25% places in terms of co-location density, respectively (iv)
Descriptive statistics µ and σ correspond to the mean and standard deviation of the dependant variable on a
base Sunday (v) E.g., Covid 1 increased the average individual Jaccard by 27.8 percentage-point compared
to the Base Sunday in home locations, i.e., an increase of 124.1% (.278/.224) of the mean average individual
Jaccard on that base day in home locations.

The two places where people mix relatively little on a base Sunday are the home location

and most frequented areas. Both locations display about 22% of network overlap among ties

on a base Sunday. People tend to meet more people sharing a different network in Parks and

Downtown, or the least frequented areas where the average Jaccard indices are 0.06, 0.148,

and 0.088, respectively.

During the pandemic, people almost always met more with individuals sharing the same
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network than during this base Sunday. Unsurprisingly, the absolute effect is the largest in

COVID 1 in the Home area, with a 27.8 %-point increase. In relative terms, the effect was

the strongest during COVID 1 in the least frequented areas. Generally, the pandemic caused

people to meet relatively more with individuals sharing the same network in the Home area

than in the Not-Home area, in the least frequented than in the most frequented areas, and in

parks more than in the downtown area. These favored places – nearby home, less frequented,

outdoor areas – were also favored regarding the number of meetings during the pandemic. In

light of the results of Section 4.2, we see that people favored meetings in these places, but they

particularly favored meetings with close ties in these places. These locations were considered

(by regulation or selection) to be less risky for contamination during the pandemic, and the

preferences shifted towards meetings with close ties.

Contrary to the pandemic effect, people almost always meet more with individuals sharing

a distinct network during high pollution when considering specific places except for the not-

home area. The impact of high pollution on the Jaccard distribution is also much milder, at

most of -1.4%-point in parks. This latter mild reduction is likely explained by the absence

of mobility regulation, allowing people to sort freely in space. It is easier to smooth the

shock when people can freely discriminate who and where to meet. Interestingly, the relative

decrease in Jaccard value in parks during high pollution is substantial (considering an average

of 0.06, we observe a reduction of about 25 percent). This may be explained by parks being

unpopular meeting locations during pollution, especially for coordinated, close-tie meetings,

thus leading to a faster decrease in close ties meetings than in bridge meetings there.

This important pattern is highlighted in the Appendix Table A 3: during high pollution,

the average Jaccard did not increase in most places because people were actively meeting

with more bridges, but also because they met much less – if they met at all – with their close

ties, especially in places deemed as unpleasant. In general, during high pollution, the number

of meetings with close ties dropped everywhere, particularly in unpleasant areas, and pro-

portionally more than the number of meetings with bridges. In parks, high pollution caused

the number of meetings with close ties to decrease by 14.8%, while meetings with bridges

decreased by 10.4%. However, in most places, the number of bridges even increased. There

are several possible explanations for this. The most straightforward rationale to explain this

general pattern is that when close, central, intertwined ties leave the network, the remain-
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ing surrounding ties’ Jaccard index mechanically decreases, and these remaining ties become

bridges. If the shocks remove primarily close ties meetings, the overall network will be natu-

rally more mixed. Another possibility, which would require highly local data about meeting

location characteristics, is that bridges are created as shocks limit location possibilities to

fewer, safer spots and push diverse, close ties networks to co-locate in the same area. For

instance, friends from different parts of the city converge in the same malls because of high

pollution. Still, these passive bridge creation processes appear to be consistently smaller in

magnitude than the initial, active close ties loss.

Therefore, when mobility is unconstrained, adverse conditions primarily affect the volume

of meetings with close ties and the meeting locations of close ties. Places characteristics might

help smooth the shock on close ties interactions, and close ties use then these areas to meet.

In the case of high pollution, this combined effect caused people to decrease relatively less

their average Jaccard in the not-home area than in the home area, in the least frequented than

in the most frequented areas, and in the Downtown area more than in Parks. The network

also favored nearby not-home, less frequented, indoor areas during high pollution.

During the COVID pandemic, bridges decreased more than close ties as regulation required

individuals to remain physically close to their families and friends. In doing so, the city

network crumpled into many small ‘villages.’ Nonetheless, when mobility is unconstrained, as

is the case during high pollution, the networks’ close ties may collapse before the bridges as

individuals limit meeting with their close ones, especially in risky or unattractive areas, thus

making the remaining encounters crucial for the network’s very existence.

5 Discussion

In our setting, shocks affect the attractiveness of different places or, put differently, the costs

of visiting specific places and – in particular, the COVID shock – constrain mobility. The

previous results indicate that individuals react to shocks in the following ways: i) at the

extensive margin by reducing the number of meetings, ii) by using mobility and the choice

of meeting locations to minimize the costs of a meeting, or iii) at the intensive margin by

adjusting the meeting times. One could formalize this idea through a simple constraint

function: given a shock, is there a place whose characteristics allow me to meet a close tie
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safely? Can my close relation and I reach this place? If not, then we cannot meet. Mobility and

constraint choice of meeting place thereby affect the type of meetings and network structure.

The variety and distances between places in Singapore arguably did not change between

September 2019 and June 2020. The shocks – COVID, high pollution, and high tempera-

tures, affected meetings through two dimensions. First, they heterogeneously impacted the

value of meetings by location: pollution positively affected individuals’ preferences for indoor

spaces over outdoor spaces, whereas COVID negatively affected these individuals’ preferences.

Second, the shocks affected mobility restrictions differently. Uncoordinated shocks, i.e., pol-

lution and high temperatures, did not restrict mobility per se, whereas the pandemic required

individuals to stay within their home clusters.

With this in mind, a couple of comments are of interest. First, this current version of the

paper does not directly account for spatial mobility. Instead, we explore reactions to shocks as

variations in co-location patterns in different types of meeting places. Doing so allowed us to

confirm that shocks heterogeneously impacted the value of meetings by location but left aside

the second channel through which shocks affect meetings: mobility. In an upcoming version,

we directly tackle the constraint function mentioned above by deriving a spatial Jaccard index

– a measure of overlapping visited areas, as a proxy for overlapping tie mobility. We then use

this new measure to study how shocks affect whether people meet and whom they meet – i.e.,

the impact of the spatial Jaccard index on the social Jaccard index.

Second, this first version clearly illustrates how changing meeting conditions affect meeting

at the extensive margin. The results indicate that the overall number of meetings decreases for

all types of shocks. Yet, the current data does not allow us to analyze whether these meetings,

which would have otherwise existed absent the shock, are shifted to the digital space. In

other words, we are currently ignorant of the true number of meetings that disappear from

the network as we do not know to what extent individuals smooth shocks using the digital

space. Importantly, the digital space typically does not allow creating new ties – one usually

meets online with people she already knows. Consequently, smoothing shocks with the digital

space, rather than mobility in the physical space, which allows meeting new people, may

have significant consequences on the structure of the urban social network. In particular, the

unplanned meetings with individuals sharing a small overlap in their network will vanish. In

a related paper, we study the impact of shocks on the marginal rate of substitution between
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the physical and digital space by adding the internet, social apps, and phone consumption to

the current data.

6 Conclusion

Social interactions are critical to creating, diffusing, and conserving social and human capital.

Spatial proximity – and therefore urban density– strengthen this relation, making social in-

teractions fundamental for cities. With more than 80% of the developed countries population

living in urban areas and rapid urbanization in developing ones, more frequent and intense

environmental shocks might affect many of these benefits from density.

This paper aims to document the impact of such adverse conditions – i.e., heat, pollution,

and COVID-19, on the patterns of urban social interactions. Using a unique, high-resolution

dataset on mobility and meetings covering half of the population in Singapore, we stress the

importance of meeting location diversity to mitigate the impact of adverse environmental

shocks on the network of urban social interactions.

We first characterize the network and sociodemographic characteristics of social ties bridg-

ing the network’s clusters together. We then show that these ties, characterized by a higher

diversity, are particularly sensitive to shocks. Overall, environmental shocks decrease the

total number of meetings (by 77% in the worst COVID case and by 7% during high pol-

lution). However, environmental conditions also affect preferences over meeting locations.

Conditional on meeting, an environmental shock may increase population mixing by con-

straining meeting location preferences. Here, we bring to light a trade-off: when a negative

shock occurs, higher places’ diversity increases meeting possibilities but decreases mixing op-

portunities. Respectively, lower places’ diversity decreases meeting possibilities but increases

mixing opportunities.

Meeting places diversity, therefore, plays a crucial role in keeping the city network from

collapsing into a multitude of independent clusters (or ‘villages’) when a shock occurs, which

underlines the importance of sound urban planning for city networks’ resilience to adverse

conditions.
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APPENDIX

Table A 1: Base Sunday Descriptive Statistics

Location
Total

Encounters
Meetings Time Jaccard
µ σ µ σ µ σ

Overall 110,567,516 115.57 169.62 255.63 171.03 .241 .141

By Residence:
- Home 66,998,396 72.75 104.74 306.01 176.48 .224 .161
- Not Home 43,569,120 46.99 123.14 81.92 86.82 .104 .161

By Popularity:
- Most Freq. 58,667,639 95.42 165.11 231.778 187.01 .216 .156
- Least Freq. 482,072 15.77 34.31 168.02 193.35 .088 .135

By Type:
- Downtown 6,258,826 127.69 269.14 59.09 42.04 .148 .139
- Parks 1,702,384 40.85 65.14 143.67 144.21 .067 .085

(i) All statistics are provided on a base Sunday (ii) Base Sunday for Parks differs from Base
Sunday for other locations (iii) Statistics µ and σ are at the individual level (iv) Total encounters
refers to the total number of bi-lateral meetings {i; j} {j; i} occurring in a given area (v) Most
Freq. and Least Freq. refer to the 25% most and least frequented planning areas, as defined by
the total number of bi-lateral meetings occurring per square kilometer during a Base Day (vi)
E.g. The average meeting time out of home area is 82 minutes on a Base Sunday.
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Table A 2: Aggregate effect of shocks on social mixing

Jaccard Indices
Average Median Bottom 25% (bridges) Top 25% (close ties)

(µ = .243; σ = .143) (µ = .228; σ = .156) Log Meetings Log Avg. Time Log Meetings Log Avg. Time

Covid 1 0.257*** 0.307*** -1.168*** -1.064*** 0.420*** 2.078***
(0.000) (0.000) (0.001) (0.002) (0.001) (0.003)

Covid 2 0.136*** 0.144*** -0.916*** -0.810*** 0.329*** 1.381***
(0.000) (0.000) (0.001) (0.002) (0.001) (0.003)

Covid 3 0.052*** 0.051*** -0.589*** -0.360*** 0.145*** 0.667***
(0.000) (0.000) (0.001) (0.002) (0.001) (0.003)

High Poll. -0.008*** -0.016*** -0.074*** 0.072*** -0.049*** -0.038***
(0.000) (0.000) (0.001) (0.002) (0.001) (0.003)

High Temp. -0.003*** -0.003*** -0.107*** -0.055*** -0.024*** -0.015***
(0.000) (0.000) (0.001) (0.001) (0.001) (0.002)

Observations 6,387,240 6,387,240 8,387,440 6,387,240 8,387,440 6,387,240
Individual FE Y Y Y Y Y Y
R2 0.54 0.53 0.67 0.55 0.62 0.51

(i) Standard errors are clustered at the individual level and reported in parentheses ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. (ii) Column (1) reports
the impact of shocks on the average Jaccard. The mean and standard deviation on the base day are reported. (iii) Column (2-3) and (4-5) report
respectively the impact of shocks on high and low Jaccard encounters as defined on a base day.

Figure A.1: Log density of individual meetings per planning area on a base Sunday. There are 55 planing
areas in Singapore. We collect information on 51 of them. The four areas left (uncolored) are Tuas, Western
Islands, Straits View, and Changi Bay. These are mostly industrial, unpopulated regions. In general, more
than 2.1 million individual meetings occur in the average planning area on a Base Sunday. The Orchard
planning area – notable for its many commercial centers – displays the highest meeting density with close to
5.2 million individual meetings.
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Table A 3: How do shocks affect bridges vs. close ties meetings in space?

Bridges Close Ties Bridges Close Ties

HOME AREA NOT HOME AREA

Covid 1 -0.911*** 0.436*** -0.703*** 0.199***
(0.002) (0.002) (0.003) (0.012)

Covid 3 -0.378*** 0.090*** -0.353*** -0.070***
(0.001) (0.003) (0.002) (0.009)

High Poll. 0.041*** -0.140*** 0.038*** 0.054***
(0.001) (0.003) (0.002) (0.008)

Observations 2,365,366 2,181,757 1,163,234 258,191
Individual FE Y Y Y Y
R2 0.59 0.60 0.60 0.57

MOST FREQUENTED LEAST FREQUENTED

Covid 1 -0.952*** 0.297*** -0.434*** 0.922***
(0.003) (0.004) (0.014) (0.044)

Covid 3 -0.401*** -0.014*** -0.205*** 0.220***
(0.002) (0.004) (0.012) (0.045)

High Poll. 0.022*** -0.123*** 0.049*** -0.101**
(0.002) (0.004) (0.010) (0.047)

Observations 1,279,181 1,075,701 35,379 6,830
Individual FE Y Y Y Y
R2 0.60 0.58 0.59 0.71

DOWNTOWN PARKS

Covid 1 -1.018*** -0.510*** -0.613*** 0.464***
(0.023) (0.067) (0.016) (0.060)

Covid 3 -0.491*** -0.845*** -0.308*** 0.070
(0.016) (0.051) (0.014) (0.060)

High Poll. 0.010 -0.232*** -0.104*** -0.148**
(0.012) (0.029) (0.014) (0.067)

Observations 27,869 9,797 26,570 2,777
Individual FE Y Y Y Y
R2 0.67 0.78 0.63 0.64

(i) Standard errors reported in parentheses ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. (ii) Bridges refers to the Log
number of meetings whose Jaccard index belongs to the first quartile of the Jaccard distribution on a base Sunday
(iii) Close Ties refers to the Log number of meetings whose Jaccard index belongs to the fourth quartile of the
Jaccard distribution on a base Sunday (iv) E.g. Compared to a normal Sunday, Covid 1 reduces the number of
meetings with bridges by 91.1% in the Home area.
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Figure A.2: Number of mobile phone users assigned to each planning area in Singapore versus census
population size.
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Figure A.3: Left: the fraction of inter-ethnicity ties to all ties with a given value of the Jaccard index, Jij ,
decreases with increasing value of Jij . Hence, low-Jij links tend to be more frequently formed by individuals
of different ethnicities (compared to high-Jij links). Right: the fraction of ties between two individuals with
age difference > 20 years decreases with increasing value Jij . Hence, low-Jij links tend to be more frequently
formed by two individuals with a larger age difference (compared to high-Jij links).
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Figure A.4: (i) Hourly Standard Pollution Index (PSI) time series is superimposed on the levels of health
advisories. (ii) The components entering the PSI index are particulate matter (PM 10), fine particulate matter
(PM 2.5), sulphur dioxide (SO 2), nitrogen dioxide (NO 2), ozone (O 3), and carbon monoxide (CO). (iii)
Good & Moderate: All persons can perform normal activities (iv) Unhealthy : Healthy person must reduce
outdoor activities. Pregnant and elderly person must minimize them. People subject to lung or heart disease
must avoid them. (v) Very Unhealthy : People must avoid outdoor activities. (vi) Source: Singapore National
Environment Agency
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